These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Morphological Changes in Spores during Germination in Bacillus cereus and Bacillus subtilis. Tsugukuni T; Shigemune N; Nakayama M; Miyamoto T Biocontrol Sci; 2020; 25(4):203-213. PubMed ID: 33281178 [TBL] [Abstract][Full Text] [Related]
7. Inorganic polyphosphate in Bacillus cereus: motility, biofilm formation, and sporulation. Shi X; Rao NN; Kornberg A Proc Natl Acad Sci U S A; 2004 Dec; 101(49):17061-5. PubMed ID: 15572452 [TBL] [Abstract][Full Text] [Related]
8. A method for the determination of bacterial spore DNA content based on isotopic labelling, spore germination and diphenylamine assay; ploidy of spores of several Bacillus species. Hauser PM; Karamata D Biochimie; 1992; 74(7-8):723-33. PubMed ID: 1391052 [TBL] [Abstract][Full Text] [Related]
9. Array-based transcriptional analysis of Clostridium sporogenes UC9000 during germination, cell outgrowth and vegetative life. Bassi D; Cappa F; Cocconcelli PS Food Microbiol; 2013 Feb; 33(1):11-23. PubMed ID: 23122496 [TBL] [Abstract][Full Text] [Related]
10. Structural, mass and elemental analyses of storage granules in methanogenic archaeal cells. Toso DB; Henstra AM; Gunsalus RP; Zhou ZH Environ Microbiol; 2011 Sep; 13(9):2587-99. PubMed ID: 21854518 [TBL] [Abstract][Full Text] [Related]
11. Single-cell elemental analysis of bacteria: quantitative analysis of polyphosphates in Mycobacterium tuberculosis. Ward SK; Heintz JA; Albrecht RM; Talaat AM Front Cell Infect Microbiol; 2012; 2():63. PubMed ID: 22919654 [TBL] [Abstract][Full Text] [Related]
12. Electron-dense granules in Desulfovibrio gigas do not consist of inorganic triphosphate but of a glucose pentakis(diphosphate). Hensgens CM; Santos H; Zhang C; Kruizinga WH; Hansen TA Eur J Biochem; 1996 Dec; 242(2):327-31. PubMed ID: 8973651 [TBL] [Abstract][Full Text] [Related]
13. Architecture and high-resolution structure of Bacillus thuringiensis and Bacillus cereus spore coat surfaces. Plomp M; Leighton TJ; Wheeler KE; Malkin AJ Langmuir; 2005 Aug; 21(17):7892-8. PubMed ID: 16089397 [TBL] [Abstract][Full Text] [Related]
14. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Galperin MY; Mekhedov SL; Puigbo P; Smirnov S; Wolf YI; Rigden DJ Environ Microbiol; 2012 Nov; 14(11):2870-90. PubMed ID: 22882546 [TBL] [Abstract][Full Text] [Related]
16. Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores. Bressuire-Isoard C; Bornard I; Henriques AO; Carlin F; Broussolle V Appl Environ Microbiol; 2016 Jan; 82(1):232-43. PubMed ID: 26497467 [TBL] [Abstract][Full Text] [Related]
17. Construction of Bacillus thuringiensis Simulant Strains Suitable for Environmental Release. Park S; Kim C; Lee D; Song DH; Cheon KC; Lee HS; Kim SJ; Kim JC; Lee SY Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28258144 [TBL] [Abstract][Full Text] [Related]
18. Monoclonal antibodies for use in detection of Bacillus and Clostridium spores. Quinlan JJ; Foegeding PM Appl Environ Microbiol; 1997 Feb; 63(2):482-7. PubMed ID: 9023926 [TBL] [Abstract][Full Text] [Related]
19. Distribution of calcium and other elements in cryosectioned Bacillus cereus T spores, determined by high-resolution scanning electron probe x-ray microanalysis. Stewart M; Somlyo AP; Somlyo AV; Shuman H; Lindsay JA; Murrell WG J Bacteriol; 1980 Jul; 143(1):481-91. PubMed ID: 6772633 [TBL] [Abstract][Full Text] [Related]