These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. A scalable method for parameter identification in kinetic models of metabolism using steady-state data. Srinivasan S; Cluett WR; Mahadevan R Bioinformatics; 2019 Dec; 35(24):5216-5225. PubMed ID: 31197317 [TBL] [Abstract][Full Text] [Related]
44. Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks. Saa PA; Nielsen LK Biotechnol Adv; 2017 Dec; 35(8):981-1003. PubMed ID: 28916392 [TBL] [Abstract][Full Text] [Related]
47. Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws--a promising method for speeding up the kinetic modelling of complex metabolic networks. Bulik S; Grimbs S; Huthmacher C; Selbig J; Holzhütter HG FEBS J; 2009 Jan; 276(2):410-24. PubMed ID: 19137631 [TBL] [Abstract][Full Text] [Related]
48. Integrating -omics data into genome-scale metabolic network models: principles and challenges. Ramon C; Gollub MG; Stelling J Essays Biochem; 2018 Oct; 62(4):563-574. PubMed ID: 30315095 [TBL] [Abstract][Full Text] [Related]
49. Bayesian parameter estimation for dynamical models in systems biology. Linden NJ; Kramer B; Rangamani P PLoS Comput Biol; 2022 Oct; 18(10):e1010651. PubMed ID: 36269772 [TBL] [Abstract][Full Text] [Related]
50. Metabolite-Enzyme Coevolution: From Single Enzymes to Metabolic Pathways and Networks. Noda-Garcia L; Liebermeister W; Tawfik DS Annu Rev Biochem; 2018 Jun; 87():187-216. PubMed ID: 29925259 [TBL] [Abstract][Full Text] [Related]
51. Total enzyme activity constraint and homeostatic constraint impact on the optimization potential of a kinetic model. Komasilovs V; Pentjuss A; Elsts A; Stalidzans E Biosystems; 2017 Dec; 162():128-134. PubMed ID: 28965873 [TBL] [Abstract][Full Text] [Related]
52. Systems Biology Approaches to Enzyme Kinetics. Finn NA; Raddatz AD; Kemp ML Methods Mol Biol; 2021; 2342():419-440. PubMed ID: 34272703 [TBL] [Abstract][Full Text] [Related]
53. Measuring specificity in multi-substrate/product systems as a tool to investigate selectivity in vivo. Kuo YM; Henry RA; Andrews AJ Biochim Biophys Acta; 2016 Jan; 1864(1):70-6. PubMed ID: 26321598 [TBL] [Abstract][Full Text] [Related]
54. Mechanistic pathway modeling for industrial biotechnology: challenging but worthwhile. Wiechert W; Noack S Curr Opin Biotechnol; 2011 Oct; 22(5):604-10. PubMed ID: 21353523 [TBL] [Abstract][Full Text] [Related]
55. Lessons on enzyme kinetics from quantitative proteomics. Davidi D; Milo R Curr Opin Biotechnol; 2017 Aug; 46():81-89. PubMed ID: 28288339 [TBL] [Abstract][Full Text] [Related]
56. KinMod database: a tool for investigating metabolic regulation. Haddadi K; Ahmed Barghout R; Mahadevan R Database (Oxford); 2022 Oct; 2022():. PubMed ID: 36222201 [TBL] [Abstract][Full Text] [Related]
57. An energetic reformulation of kinetic rate laws enables scalable parameter estimation for biochemical networks. C Mason J; W Covert M J Theor Biol; 2019 Jan; 461():145-156. PubMed ID: 30365946 [TBL] [Abstract][Full Text] [Related]
58. Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters. Chiang AW; Liu WC; Charusanti P; Hwang MJ BMC Syst Biol; 2014 Jan; 8():4. PubMed ID: 24428922 [TBL] [Abstract][Full Text] [Related]
59. Metabolic kinetic modeling provides insight into complex biological questions, but hurdles remain. Strutz J; Martin J; Greene J; Broadbelt L; Tyo K Curr Opin Biotechnol; 2019 Oct; 59():24-30. PubMed ID: 30851632 [TBL] [Abstract][Full Text] [Related]