These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 23813783)
1. In vivo study of the biocompatibility of a novel compressed collagen hydrogel scaffold for artificial corneas. Xiao X; Pan S; Liu X; Zhu X; Connon CJ; Wu J; Mi S J Biomed Mater Res A; 2014 Jun; 102(6):1782-7. PubMed ID: 23813783 [TBL] [Abstract][Full Text] [Related]
3. Plastic compression of a collagen gel forms a much improved scaffold for ocular surface tissue engineering over conventional collagen gels. Mi S; Chen B; Wright B; Connon CJ J Biomed Mater Res A; 2010 Nov; 95(2):447-53. PubMed ID: 20648540 [TBL] [Abstract][Full Text] [Related]
4. [An experimental study of mesenchymal stem cells in tissue engineering scaffolds implanted in rabbit corneal lamellae to increase keratoprosthesis biointegration]. Bai H; Wang LL; Huang YF; Huang JX Zhonghua Yan Ke Za Zhi; 2016 Mar; 52(3):192-7. PubMed ID: 26979116 [TBL] [Abstract][Full Text] [Related]
5. In vivo biocompatibility evaluation of in situ-forming polyethylene glycol-collagen hydrogels in corneal defects. Chun YH; Park SK; Kim EJ; Lee HJ; Kim H; Koh WG; Cunha GF; Myung D; Na KS Sci Rep; 2021 Dec; 11(1):23913. PubMed ID: 34903788 [TBL] [Abstract][Full Text] [Related]
6. In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Sasaki S; Funamoto S; Hashimoto Y; Kimura T; Honda T; Hattori S; Kobayashi H; Kishida A; Mochizuki M Mol Vis; 2009 Oct; 15():2022-8. PubMed ID: 19844587 [TBL] [Abstract][Full Text] [Related]
8. Reconstruction of a tissue-engineered cornea with porcine corneal acellular matrix as the scaffold. Fu Y; Fan X; Chen P; Shao C; Lu W Cells Tissues Organs; 2010; 191(3):193-202. PubMed ID: 19690400 [TBL] [Abstract][Full Text] [Related]
9. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7]. Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281 [TBL] [Abstract][Full Text] [Related]
10. Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds-a novel approach to corneal tissue engineering. Zhou H; Wang Z; Cao H; Hu H; Luo Z; Yang X; Cui M; Zhou L J Biomater Sci Polym Ed; 2019 Dec; 30(17):1604-1619. PubMed ID: 31438806 [TBL] [Abstract][Full Text] [Related]
11. Cell-laden and orthogonal-multilayer tissue-engineered corneal stroma induced by a mechanical collagen microenvironment and transplantation in a rabbit model. Cui Z; Zeng Q; Liu S; Zhang Y; Zhu D; Guo Y; Xie M; Mathew S; Cai D; Zhang J; Chen J Acta Biomater; 2018 Jul; 75():183-199. PubMed ID: 29883810 [TBL] [Abstract][Full Text] [Related]
12. Corneal epithelialisation on surface-modified hydrogel implants: artificial cornea. Ma A; Zhao B; Bentley AJ; Brahma A; MacNeil S; Martin FL; Rimmer S; Fullwood NJ J Mater Sci Mater Med; 2011 Mar; 22(3):663-70. PubMed ID: 21287242 [TBL] [Abstract][Full Text] [Related]
13. [Biocompatibility of acellular corneal stroma and transplantation of tissue-engineered corneal epithelium]. Fang XF; Zhao J; Shi WY; Xie LX Zhonghua Yan Ke Za Zhi; 2008 Oct; 44(10):934-42. PubMed ID: 19176124 [TBL] [Abstract][Full Text] [Related]
14. Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering. Du L; Wu X Artif Organs; 2011 Jul; 35(7):691-705. PubMed ID: 21501189 [TBL] [Abstract][Full Text] [Related]
15. A new collagen scaffold for the improvement of corneal biomechanical properties in a rabbit model. Andreev AY; Osidak EO; Grigoriev TE; Krasheninnikov SV; Zaharov VD; Zaraitianc OV; Borzenok SA; Domogatsky SP Exp Eye Res; 2021 Jun; 207():108580. PubMed ID: 33872673 [TBL] [Abstract][Full Text] [Related]
16. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979 [TBL] [Abstract][Full Text] [Related]
17. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea. Zheng LL; Vanchinathan V; Dalal R; Noolandi J; Waters DJ; Hartmann L; Cochran JR; Frank CW; Yu CQ; Ta CN J Biomed Mater Res A; 2015 Oct; 103(10):3157-65. PubMed ID: 25778285 [TBL] [Abstract][Full Text] [Related]
18. Clinical evaluation and induced corneal vascularization study by native and anionic collagen membranes in rabbits corneas. Binotto TE; Andrade AL; Costa TA; Plepis AM; Lopes RA; Souza WM Arq Bras Oftalmol; 2009; 72(6):760-5. PubMed ID: 20098895 [TBL] [Abstract][Full Text] [Related]
19. Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma. Han Y; Li C; Cai Q; Bao X; Tang L; Ao H; Liu J; Jin M; Zhou Y; Wan Y; Liu Z Biomed Mater; 2020 Apr; 15(3):035022. PubMed ID: 31715589 [TBL] [Abstract][Full Text] [Related]
20. Amniotic membrane immobilized poly(vinyl alcohol) hybrid polymer as an artificial cornea scaffold that supports a stratified and differentiated corneal epithelium. Uchino Y; Shimmura S; Miyashita H; Taguchi T; Kobayashi H; Shimazaki J; Tanaka J; Tsubota K J Biomed Mater Res B Appl Biomater; 2007 Apr; 81(1):201-6. PubMed ID: 16924609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]