BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23813793)

  • 1. Impact of hydrostatic pressure on an intrinsically disordered protein: a high-pressure NMR study of α-synuclein.
    Roche J; Ying J; Maltsev AS; Bax A
    Chembiochem; 2013 Sep; 14(14):1754-61. PubMed ID: 23813793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deuterium isotope shifts for backbone ¹H, ¹⁵N and ¹³C nuclei in intrinsically disordered protein α-synuclein.
    Maltsev AS; Ying J; Bax A
    J Biomol NMR; 2012 Oct; 54(2):181-91. PubMed ID: 22960996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins.
    Yao X; Becker S; Zweckstetter M
    J Biomol NMR; 2014 Dec; 60(4):231-40. PubMed ID: 25367087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A maximum entropy approach to the study of residue-specific backbone angle distributions in α-synuclein, an intrinsically disordered protein.
    Mantsyzov AB; Maltsev AS; Ying J; Shen Y; Hummer G; Bax A
    Protein Sci; 2014 Sep; 23(9):1275-90. PubMed ID: 24976112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding.
    Yao J; Chung J; Eliezer D; Wright PE; Dyson HJ
    Biochemistry; 2001 Mar; 40(12):3561-71. PubMed ID: 11297422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15N or 13C' chemical shifts of multiple contiguous residues in highly resolved 3D spectra.
    Yoshimura Y; Kulminskaya NV; Mulder FA
    J Biomol NMR; 2015 Feb; 61(2):109-21. PubMed ID: 25577242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neighboring residue effects in terminally blocked dipeptides: implications for residual secondary structures in intrinsically unfolded/disordered proteins.
    Jung YS; Oh KI; Hwang GS; Cho M
    Chirality; 2014 Sep; 26(9):443-52. PubMed ID: 24453185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data.
    Mantsyzov AB; Shen Y; Lee JH; Hummer G; Bax A
    J Biomol NMR; 2015 Sep; 63(1):85-95. PubMed ID: 26219516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory.
    Xu XP; Case DA
    Biopolymers; 2002 Dec; 65(6):408-23. PubMed ID: 12434429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical correlation between protein backbone 15N and 13C secondary chemical shifts and its application to nitrogen chemical shift re-referencing.
    Wang L; Markley JL
    J Biomol NMR; 2009 Jun; 44(2):95-9. PubMed ID: 19436955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reduced dimensionality NMR pulse sequence and an efficient protocol for unambiguous assignment in intrinsically disordered proteins.
    Reddy JG; Hosur RV
    J Biomol NMR; 2014 Jul; 59(3):199-210. PubMed ID: 24854885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the 3D structures of mouse and human α-synuclein fibrils by solid-state NMR and STEM.
    Hwang S; Fricke P; Zinke M; Giller K; Wall JS; Riedel D; Becker S; Lange A
    J Struct Biol; 2019 Apr; 206(1):43-48. PubMed ID: 29678776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of nearest neighbor effects on backbone torsion angles and NMR scalar coupling constants in disordered proteins.
    Shen Y; Roche J; Grishaev A; Bax A
    Protein Sci; 2018 Jan; 27(1):146-158. PubMed ID: 28884933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state ¹³C NMR reveals annealing of raft-like membranes containing cholesterol by the intrinsically disordered protein α-Synuclein.
    Leftin A; Job C; Beyer K; Brown MF
    J Mol Biol; 2013 Aug; 425(16):2973-87. PubMed ID: 23583776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D non-uniformly sampled HCBCACON and ¹J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins.
    Nováček J; Haba NY; Chill JH; Zídek L; Sklenář V
    J Biomol NMR; 2012 Jun; 53(2):139-48. PubMed ID: 22580891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic insight into the relationship between N-terminal acetylation of α-synuclein and fibril formation rates by NMR and fluorescence.
    Kang L; Janowska MK; Moriarty GM; Baum J
    PLoS One; 2013; 8(9):e75018. PubMed ID: 24058647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of N-terminal acetylation of α-synuclein on its random coil and lipid binding properties.
    Maltsev AS; Ying J; Bax A
    Biochemistry; 2012 Jun; 51(25):5004-13. PubMed ID: 22694188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-terminal acetylation of α-synuclein induces increased transient helical propensity and decreased aggregation rates in the intrinsically disordered monomer.
    Kang L; Moriarty GM; Woods LA; Ashcroft AE; Radford SE; Baum J
    Protein Sci; 2012 Jul; 21(7):911-7. PubMed ID: 22573613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring the Interaction of α-Synuclein with Calcium Ions through Exclusively Heteronuclear Nuclear Magnetic Resonance Experiments.
    Pontoriero L; Schiavina M; Murrali MG; Pierattelli R; Felli IC
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18537-18545. PubMed ID: 32735376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backbone assignment and dynamics of human α-synuclein in viscous 2 M glucose solution.
    Wu KP; Baum J
    Biomol NMR Assign; 2011 Apr; 5(1):43-6. PubMed ID: 20872101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.