These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 23813915)

  • 1. Physical methods for intracellular delivery: practical aspects from laboratory use to industrial-scale processing.
    Meacham JM; Durvasula K; Degertekin FL; Fedorov AG
    J Lab Autom; 2014 Feb; 19(1):1-18. PubMed ID: 23813915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and ex vivo strategies for intracellular delivery.
    Stewart MP; Sharei A; Ding X; Sahay G; Langer R; Jensen KF
    Nature; 2016 Oct; 538(7624):183-192. PubMed ID: 27734871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comprehensive Review on Intracellular Delivery.
    Morshedi Rad D; Alsadat Rad M; Razavi Bazaz S; Kashaninejad N; Jin D; Ebrahimi Warkiani M
    Adv Mater; 2021 Apr; 33(13):e2005363. PubMed ID: 33594744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis.
    Kaladharan K; Kumar A; Gupta P; Illath K; Santra TS; Tseng FG
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology.
    Nguyen NT; Shaegh SA; Kashaninejad N; Phan DT
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1403-19. PubMed ID: 23726943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing.
    Fajrial AK; He QQ; Wirusanti NI; Slansky JE; Ding X
    Theranostics; 2020; 10(12):5532-5549. PubMed ID: 32373229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostraw-electroporation system for highly efficient intracellular delivery and transfection.
    Xie X; Xu AM; Leal-Ortiz S; Cao Y; Garner CC; Melosh NA
    ACS Nano; 2013 May; 7(5):4351-8. PubMed ID: 23597131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery.
    Brooks J; Minnick G; Mukherjee P; Jaberi A; Chang L; Espinosa HD; Yang R
    Small; 2020 Dec; 16(51):e2004917. PubMed ID: 33241661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MATra - Magnet Assisted Transfection: combining nanotechnology and magnetic forces to improve intracellular delivery of nucleic acids.
    Bertram J
    Curr Pharm Biotechnol; 2006 Aug; 7(4):277-85. PubMed ID: 16918404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal intracellular biomolecule delivery with precise dosage control.
    Cao Y; Chen H; Qiu R; Hanna M; Ma E; Hjort M; Zhang A; Lewis RS; Wu JC; Melosh NA
    Sci Adv; 2018 Oct; 4(10):eaat8131. PubMed ID: 30402539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnology for protein delivery: Overview and perspectives.
    Yu M; Wu J; Shi J; Farokhzad OC
    J Control Release; 2016 Oct; 240():24-37. PubMed ID: 26458789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-scale systems for in vivo drug delivery.
    LaVan DA; McGuire T; Langer R
    Nat Biotechnol; 2003 Oct; 21(10):1184-91. PubMed ID: 14520404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections: A review.
    Kumar MS; Das AP
    Adv Colloid Interface Sci; 2017 Nov; 249():53-65. PubMed ID: 28668171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy.
    Parhi P; Mohanty C; Sahoo SK
    Drug Discov Today; 2012 Sep; 17(17-18):1044-52. PubMed ID: 22652342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanovehicular intracellular delivery systems.
    Prokop A; Davidson JM
    J Pharm Sci; 2008 Sep; 97(9):3518-90. PubMed ID: 18200527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances of controlled drug delivery using microfluidic platforms.
    Sanjay ST; Zhou W; Dou M; Tavakoli H; Ma L; Xu F; Li X
    Adv Drug Deliv Rev; 2018 Mar; 128():3-28. PubMed ID: 28919029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts.
    Stewart MP; Langer R; Jensen KF
    Chem Rev; 2018 Aug; 118(16):7409-7531. PubMed ID: 30052023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotechnology and immunoengineering: How nanotechnology can boost CAR-T therapy.
    Nawaz W; Xu S; Li Y; Huang B; Wu X; Wu Z
    Acta Biomater; 2020 Jun; 109():21-36. PubMed ID: 32294554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation.
    Alvarez MM; Aizenberg J; Analoui M; Andrews AM; Bisker G; Boyden ES; Kamm RD; Karp JM; Mooney DJ; Oklu R; Peer D; Stolzoff M; Strano MS; Trujillo-de Santiago G; Webster TJ; Weiss PS; Khademhosseini A
    ACS Nano; 2017 Jun; 11(6):5195-5214. PubMed ID: 28524668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.