BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 23813944)

  • 1. Light-induced generation of singlet oxygen by naked gold nanoparticles and its implications to cancer cell phototherapy.
    Pasparakis G
    Small; 2013 Dec; 9(24):4130-4. PubMed ID: 23813944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photothermal release of singlet oxygen from gold nanoparticles.
    Asadirad AM; Erno Z; Branda NR
    Chem Commun (Camb); 2013 Jun; 49(50):5639-41. PubMed ID: 23677062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticles functionalized with cresyl violet and porphyrin via hyaluronic acid for targeted cell imaging and phototherapy.
    Song Y; Wang Z; Li L; Shi W; Li X; Ma H
    Chem Commun (Camb); 2014 Dec; 50(99):15696-8. PubMed ID: 25361440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro.
    Gao L; Liu R; Gao F; Wang Y; Jiang X; Gao X
    ACS Nano; 2014 Jul; 8(7):7260-71. PubMed ID: 24992260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy.
    Van de Broek B; Devoogdt N; D'Hollander A; Gijs HL; Jans K; Lagae L; Muyldermans S; Maes G; Borghs G
    ACS Nano; 2011 Jun; 5(6):4319-28. PubMed ID: 21609027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy.
    Nam J; Won N; Jin H; Chung H; Kim S
    J Am Chem Soc; 2009 Sep; 131(38):13639-45. PubMed ID: 19772360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light.
    Vankayala R; Lin CC; Kalluru P; Chiang CS; Hwang KC
    Biomaterials; 2014 Jul; 35(21):5527-38. PubMed ID: 24731706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mussel-inspired gold hollow superparticles for photothermal therapy.
    Tian Y; Shen S; Feng J; Jiang X; Yang W
    Adv Healthc Mater; 2015 May; 4(7):1009-14. PubMed ID: 25676332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy.
    Deng X; Chen Y; Cheng Z; Deng K; Ma P; Hou Z; Liu B; Huang S; Jin D; Lin J
    Nanoscale; 2016 Mar; 8(12):6837-50. PubMed ID: 26956400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-induced photothermal cell-killing effect of gold colloidal nanoparticles on epithelial carcinoma cells.
    Abdulla-Al-Mamun M; Kusumoto Y; Mihata A; Islam MS; Ahmmad B
    Photochem Photobiol Sci; 2009 Aug; 8(8):1125-9. PubMed ID: 19639114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer.
    Fazal S; Jayasree A; Sasidharan S; Koyakutty M; Nair SV; Menon D
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8080-9. PubMed ID: 24842534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic photothermal therapy (PPTT) using gold nanoparticles.
    Huang X; Jain PK; El-Sayed IH; El-Sayed MA
    Lasers Med Sci; 2008 Jul; 23(3):217-28. PubMed ID: 17674122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local field enhanced Au/CuS nanocomposites as efficient photothermal transducer agents for cancer treatment.
    Lakshmanan SB; Zou X; Hossu M; Ma L; Yang C; Chen W
    J Biomed Nanotechnol; 2012 Dec; 8(6):883-90. PubMed ID: 23029996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the photothermal conversion efficiency of gold nanocrystals.
    Chen H; Shao L; Ming T; Sun Z; Zhao C; Yang B; Wang J
    Small; 2010 Oct; 6(20):2272-80. PubMed ID: 20827680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications.
    Poletti A; Fracasso G; Conti G; Pilot R; Amendola V
    Nanoscale; 2015 Aug; 7(32):13702-14. PubMed ID: 26219425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective photothermal efficiency of citrate capped gold nanoparticles for destruction of cancer cells.
    Raji V; Kumar J; Rejiya CS; Vibin M; Shenoi VN; Abraham A
    Exp Cell Res; 2011 Aug; 317(14):2052-8. PubMed ID: 21565190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods.
    Huang YF; Sefah K; Bamrungsap S; Chang HT; Tan W
    Langmuir; 2008 Oct; 24(20):11860-5. PubMed ID: 18817428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy.
    Jung S; Nam J; Hwang S; Park J; Hur J; Im K; Park N; Kim S
    Anal Chem; 2013 Aug; 85(16):7674-81. PubMed ID: 23883363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapy with gold nanoparticles and lasers: what really kills the cells?
    Lapotko D
    Nanomedicine (Lond); 2009 Apr; 4(3):253-6. PubMed ID: 19331533
    [No Abstract]   [Full Text] [Related]  

  • 20. Enhanced imaging and accelerated photothermalysis of A549 human lung cancer cells by gold nanospheres.
    Liu X; Lloyd MC; Fedorenko IV; Bapat P; Zhukov T; Huo Q
    Nanomedicine (Lond); 2008 Oct; 3(5):617-26. PubMed ID: 18817466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.