BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23814189)

  • 61. DECOD: fast and accurate discriminative DNA motif finding.
    Huggins P; Zhong S; Shiff I; Beckerman R; Laptenko O; Prives C; Schulz MH; Simon I; Bar-Joseph Z
    Bioinformatics; 2011 Sep; 27(17):2361-7. PubMed ID: 21752801
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A single ChIP-seq dataset is sufficient for comprehensive analysis of motifs co-occurrence with MCOT package.
    Levitsky V; Zemlyanskaya E; Oshchepkov D; Podkolodnaya O; Ignatieva E; Grosse I; Mironova V; Merkulova T
    Nucleic Acids Res; 2019 Dec; 47(21):e139. PubMed ID: 31750523
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Informative priors based on transcription factor structural class improve de novo motif discovery.
    Narlikar L; Gordân R; Ohler U; Hartemink AJ
    Bioinformatics; 2006 Jul; 22(14):e384-92. PubMed ID: 16873497
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Training HMM structure with genetic algorithm for biological sequence analysis.
    Won KJ; Prügel-Bennett A; Krogh A
    Bioinformatics; 2004 Dec; 20(18):3613-9. PubMed ID: 15297297
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sequential Integration of Fuzzy Clustering and Expectation Maximization for Transcription Factor Binding Site Identification.
    Yousefian-Jazi A; Choi J
    J Comput Biol; 2018 Nov; 25(11):1247-1256. PubMed ID: 30133315
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Integration of data obtained by different experimental methods to determine the motifs in DNA sequences recognized by transcription-regulating factors].
    Kulakovskiĭ IV; Makeev VIu
    Biofizika; 2009; 54(6):965-74. PubMed ID: 20067172
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A learning method of hidden Markov models for sequence discrimination.
    Mamitsuka H
    J Comput Biol; 1996; 3(3):361-73. PubMed ID: 8891955
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optimally choosing PWM motif databases and sequence scanning approaches based on ChIP-seq data.
    Dabrowski M; Dojer N; Krystkowiak I; Kaminska B; Wilczynski B
    BMC Bioinformatics; 2015 May; 16():140. PubMed ID: 25927199
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stability selection for regression-based models of transcription factor-DNA binding specificity.
    Mordelet F; Horton J; Hartemink AJ; Engelhardt BE; Gordân R
    Bioinformatics; 2013 Jul; 29(13):i117-25. PubMed ID: 23812975
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A linear model for transcription factor binding affinity prediction in protein binding microarrays.
    Annala M; Laurila K; Lähdesmäki H; Nykter M
    PLoS One; 2011; 6(5):e20059. PubMed ID: 21637853
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A feature-based approach to modeling protein-DNA interactions.
    Sharon E; Lubliner S; Segal E
    PLoS Comput Biol; 2008 Aug; 4(8):e1000154. PubMed ID: 18725950
    [TBL] [Abstract][Full Text] [Related]  

  • 72. BEST: binding-site estimation suite of tools.
    Che D; Jensen S; Cai L; Liu JS
    Bioinformatics; 2005 Jun; 21(12):2909-11. PubMed ID: 15814553
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A penalized Bayesian approach to predicting sparse protein-DNA binding landscapes.
    Levinson M; Zhou Q
    Bioinformatics; 2014 Mar; 30(5):636-43. PubMed ID: 24115169
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Tracking transcription factor complexes on DNA using total internal reflectance fluorescence protein binding microarrays.
    Bonham AJ; Neumann T; Tirrell M; Reich NO
    Nucleic Acids Res; 2009 Jul; 37(13):e94. PubMed ID: 19487241
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Context-aware semi-supervised motif detection approach.
    Ibrahim R; Ghanem N; Ismail MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3953-6. PubMed ID: 25570857
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Modelling ChIP-seq Data Using HMMs.
    Vinciotti V
    Methods Mol Biol; 2017; 1552():115-122. PubMed ID: 28224494
    [TBL] [Abstract][Full Text] [Related]  

  • 77. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Varying levels of complexity in transcription factor binding motifs.
    Keilwagen J; Grau J
    Nucleic Acids Res; 2015 Oct; 43(18):e119. PubMed ID: 26116565
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Design of shortest double-stranded DNA sequences covering all k-mers with applications to protein-binding microarrays and synthetic enhancers.
    Orenstein Y; Shamir R
    Bioinformatics; 2013 Jul; 29(13):i71-9. PubMed ID: 23813011
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Statistical Mechanics of Transcription-Factor Binding Site Discovery Using Hidden Markov Models.
    Mehta P; Schwab DJ; Sengupta AM
    J Stat Phys; 2011 Apr; 142(6):1187-1205. PubMed ID: 22851788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.