These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23814280)

  • 1. Predators' decisions to eat defended prey depend on the size of undefended prey.
    Halpin CG; Skelhorn J; Rowe C
    Anim Behav; 2013 Jun; 85(6):1315-1321. PubMed ID: 23814280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predators' toxin burdens influence their strategic decisions to eat toxic prey.
    Skelhorn J; Rowe C
    Curr Biol; 2007 Sep; 17(17):1479-83. PubMed ID: 17716896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Body size matters for aposematic prey during predator aversion learning.
    Smith KE; Halpin CG; Rowe C
    Behav Processes; 2014 Nov; 109 Pt B():173-9. PubMed ID: 25256160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The benefits of being toxic to deter predators depends on prey body size.
    Smith KE; Halpin CG; Rowe C
    Behav Ecol; 2016; 27(6):1650-1655. PubMed ID: 28028378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambient temperature influences birds' decisions to eat toxic prey.
    Chatelain M; Halpin CG; Rowe C
    Anim Behav; 2013 Oct; 86(4):733-740. PubMed ID: 24109148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Better the devil you know: avian predators find variation in prey toxicity aversive.
    Barnett CA; Bateson M; Rowe C
    Biol Lett; 2014 Nov; 10(11):20140533. PubMed ID: 25392317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Impact of Detoxification Costs and Predation Risk on Foraging: Implications for Mimicry Dynamics.
    Halpin CG; Skelhorn J; Rowe C; Ruxton GD; Higginson AD
    PLoS One; 2017; 12(1):e0169043. PubMed ID: 28045959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numbers, neighbors, and hungry predators: What makes chemically defended aposematic prey susceptible to predation?
    Kaczmarek JM; Kaczmarski M; Mazurkiewicz J; Kloskowski J
    Ecol Evol; 2020 Dec; 10(24):13705-13716. PubMed ID: 33391674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased predation of nutrient-enriched aposematic prey.
    Halpin CG; Skelhorn J; Rowe C
    Proc Biol Sci; 2014 Apr; 281(1781):20133255. PubMed ID: 24598424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution of warning signals as reliable indicators of prey defense.
    Sherratt TN; Beatty CD
    Am Nat; 2003 Oct; 162(4):377-89. PubMed ID: 14582002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Birds learn to use distastefulness as a signal of toxicity.
    Skelhorn J; Rowe C
    Proc Biol Sci; 2010 Jun; 277(1688):1729-34. PubMed ID: 20129989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Social learning within and across predator species reduces attacks on novel aposematic prey.
    Hämäläinen L; Mappes J; Rowland HM; Teichmann M; Thorogood R
    J Anim Ecol; 2020 May; 89(5):1153-1164. PubMed ID: 32077104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between sympatric defended species depends upon predators' discriminatory behaviour.
    Halpin CG; Skelhorn J; Rowe C
    PLoS One; 2012; 7(9):e44895. PubMed ID: 22970323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicry among Unequally Defended Prey Should Be Mutualistic When Predators Sample Optimally.
    Aubier TG; Joron M; Sherratt TN
    Am Nat; 2017 Mar; 189(3):267-282. PubMed ID: 28221836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-Dependent Decision-Making by Predators and Its Consequences for Mimicry.
    Aubier TG; Sherratt TN
    Am Nat; 2020 Nov; 196(5):E127-E144. PubMed ID: 33064589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why aren't warning signals everywhere? On the prevalence of aposematism and mimicry in communities.
    Kikuchi DW; Herberstein ME; Barfield M; Holt RD; Mappes J
    Biol Rev Camb Philos Soc; 2021 Dec; 96(6):2446-2460. PubMed ID: 34128583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avian predators taste reject mimetic prey in relation to their signal reliability.
    He R; Pagani-Núñez E; Goodale E; Barnett CRA
    Sci Rep; 2022 Feb; 12(1):2334. PubMed ID: 35149707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mimicry between unequally defended prey can be parasitic: evidence for quasi-Batesian mimicry.
    Rowland HM; Mappes J; Ruxton GD; Speed MP
    Ecol Lett; 2010 Dec; 13(12):1494-502. PubMed ID: 20955507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avian predators taste-reject aposematic prey on the basis of their chemical defence.
    Skelhorn J; Rowe C
    Biol Lett; 2006 Sep; 2(3):348-50. PubMed ID: 17148400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Predator Population Dynamics on Batesian Mimicry Complexes.
    Kikuchi DW; Barfield M; Herberstein ME; Mappes J; Holt RD
    Am Nat; 2022 Mar; 199(3):406-419. PubMed ID: 35175899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.