These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 238153)

  • 1. Proceedings: The role of NADPH-cytochrome C reductase and hemoprotein in the microsomal N-oxide formation.
    Kehl M; Hlavica P
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 287 Suppl():R76. PubMed ID: 238153
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of NADPH-cytochrome c reductase in the microsomal oxidation of ethanol and methanol.
    Nelson EB; Kohl KB; Masters BS
    Drug Metab Dispos; 1973; 1(1):455-60. PubMed ID: 4129870
    [No Abstract]   [Full Text] [Related]  

  • 3. Perinatal development of tertiary amine N-oxidation and NADPH cytochrome C reduction in rat liver microsomes.
    Uehleke H; Reiner O; Hellmer KH
    Res Commun Chem Pathol Pharmacol; 1971 Nov; 2(6):793-805. PubMed ID: 4405002
    [No Abstract]   [Full Text] [Related]  

  • 4. [Effect of monooxygenase reactions catalyzed by cytochrome P-450 on the microsomal membrane].
    Karuzina II; Mengazetdinov DE; Kapitanov AB; Zhukov AA; Ivanova LI
    Biokhimiia; 1987 Jul; 52(7):1090-6. PubMed ID: 3663748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex-dependent differences in drug metabolism in the rat. 3. Temporal changes in type I binding and NADPH-cytochrome, P-450 reductase during sexual maturation.
    Cohen GM; Mannering GJ
    Drug Metab Dispos; 1974; 2(3):285-92. PubMed ID: 4153061
    [No Abstract]   [Full Text] [Related]  

  • 6. NADPH-cytochrome c reductase and its role in microsomal cytochrome P-450-dependent reactions.
    Masters BS; Nelson EB; Schacter BA; Baron J; Isaacson EL
    Drug Metab Dispos; 1973; 1(1):121-8. PubMed ID: 4129865
    [No Abstract]   [Full Text] [Related]  

  • 7. Microsomal cytochrome P450 dependent oxidation of N-hydroxyguanidines, amidoximes, and ketoximes: mechanism of the oxidative cleavage of their C=N(OH) bond with formation of nitrogen oxides.
    Jousserandot A; Boucher JL; Henry Y; Niklaus B; Clement B; Mansuy D
    Biochemistry; 1998 Dec; 37(49):17179-91. PubMed ID: 9860831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the effects of methylmercury on ethylmorphine N-demethylase and aniline hydroxylase activities and on the conversion of cytochrome P-450 to cytochrome P-420.
    Alvares AP; Cohn J; Kappas A
    Drug Metab Dispos; 1974; 2(3):259-66. PubMed ID: 4153087
    [No Abstract]   [Full Text] [Related]  

  • 9. Proceedings: Participation of microsomal NADPH-cytochrome C reductase in the metabolism of rifampicin.
    Otani A; Remmer H
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 287 Suppl():R76. PubMed ID: 167311
    [No Abstract]   [Full Text] [Related]  

  • 10. Lucigenin as a substrate of microsomal NAD(P)H-oxidoreductases.
    Schepetkin IA
    Biochemistry (Mosc); 1999 Jan; 64(1):25-32. PubMed ID: 9986909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Participation of NADPH-cytochrome C reductase in thyroid hormone biosynthesis.
    Yamamoto K; DeGroot LJ
    Endocrinology; 1975 Apr; 96(4):1022-9. PubMed ID: 235416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proceedings: Mechanism of the autocatalytic formation of ferrihemoglobin by 4-bromo-N,N-dimethylaniline-N-oxide.
    Renner G
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 287 Suppl():R80. PubMed ID: 167313
    [No Abstract]   [Full Text] [Related]  

  • 13. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC; Bewley MC; Barber MJ
    Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex-dependent differences in drug metabolism in the rat. I. Temporal changes in microsomal drug-metabolizing system of the liver during sexual maturation.
    el-Masry S el-D ; Cohen GM; Mannering GJ
    Drug Metab Dispos; 1974; 2(3):267-78. PubMed ID: 4153058
    [No Abstract]   [Full Text] [Related]  

  • 15. The involvement of NADH-cytochrome b5 reductase and cytochrome b5 complex in microsomal NADH-cytochrome c reductase activity. Changes in NADH-cytochrome c reductase activity following phenobarbital treatment.
    Starón K; Kaniuga Z
    Acta Biochim Pol; 1974; 21(1):61-6. PubMed ID: 4364831
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanisms of inhibition of drug metabolic reactions.
    Gillette J; Sasame H; Stripp B
    Drug Metab Dispos; 1973; 1(1):164-75. PubMed ID: 4149379
    [No Abstract]   [Full Text] [Related]  

  • 17. The catalysis of heme degradation by purified NADPH-cytochrome C reductase in the absence of other microsomal proteins.
    Masters BS; Schacter BA
    Ann Clin Res; 1976; 8 Suppl 17():18-27. PubMed ID: 827231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of hepatic microsomal NADPH cytochrome c reductase from rhesus monkey (Macaca mulatta).
    Ojha V; Kohli KK
    Biochem Mol Biol Int; 1994 Jan; 32(1):55-65. PubMed ID: 8012290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of liver microsomal drug metabolism in newly-hatched chicks.
    Jondorf WR; MacIntyre DE; Powis G
    Br J Pharmacol; 1973 Mar; 47(3):624P-625P. PubMed ID: 4147194
    [No Abstract]   [Full Text] [Related]  

  • 20. The involvement of NADH-cytochrome b5 reductase and cytochrome b5 complex in microsomal NADH-cytochrome c reductase activity. Resolution of the complex by triton X-100.
    Starón K; Kaniuga Z
    Acta Biochim Pol; 1974; 21(1):55-60. PubMed ID: 4364830
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.