These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23815343)

  • 1. Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features.
    Wang B; Zhang J; Chen P; Ji Z; Deng S; Li C
    BMC Bioinformatics; 2013; 14 Suppl 8(Suppl 8):S9. PubMed ID: 23815343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry.
    Wang B; Valentine S; Plasencia M; Raghuraman S; Zhang X
    BMC Bioinformatics; 2010 Apr; 11():182. PubMed ID: 20380738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of drift time in ion mobility-mass spectrometry based on Peptide molecular weight.
    Wang B; Valentine S; Plasencia M; Zhang X
    Protein Pept Lett; 2010 Sep; 17(9):1143-7. PubMed ID: 20509855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A new peptide retention time prediction method for mass spectrometry based proteomic analysis by a serial and parallel support vector machine model].
    Zhang J; Zhang D; Zhang W; Xie H
    Se Pu; 2012 Sep; 30(9):857-63. PubMed ID: 23285964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning based prediction for peptide drift times in ion mobility spectrometry.
    Shah AR; Agarwal K; Baker ES; Singhal M; Mayampurath AM; Ibrahim YM; Kangas LJ; Monroe ME; Zhao R; Belov ME; Anderson GA; Smith RD
    Bioinformatics; 2010 Jul; 26(13):1601-7. PubMed ID: 20495001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and prediction of peptide drift times in ion mobility spectrometry using sequence-based and structure-based approaches.
    Zhang Y; Jin Q; Wang S; Ren R
    Comput Biol Med; 2011 May; 41(5):272-7. PubMed ID: 21439562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of peptides observable by mass spectrometry applied at the experimental set level.
    Sanders WS; Bridges SM; McCarthy FM; Nanduri B; Burgess SC
    BMC Bioinformatics; 2007 Nov; 8 Suppl 7(Suppl 7):S23. PubMed ID: 18047723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion mobility mass spectrometry for peptide analysis.
    Harvey SR; Macphee CE; Barran PE
    Methods; 2011 Aug; 54(4):454-61. PubMed ID: 21669288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores.
    Anderson DC; Li W; Payan DG; Noble WS
    J Proteome Res; 2003; 2(2):137-46. PubMed ID: 12716127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.
    Swearingen KE; Moritz RL
    Expert Rev Proteomics; 2012 Oct; 9(5):505-17. PubMed ID: 23194268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deconvolution of mixture spectra and increased throughput of peptide identification by utilization of intensified complementary ions formed in tandem mass spectrometry.
    Kryuchkov F; Verano-Braga T; Hansen TA; Sprenger RR; Kjeldsen F
    J Proteome Res; 2013 Jul; 12(7):3362-71. PubMed ID: 23725413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using ion purity scores for enhancing quantitative accuracy and precision in complex proteomics samples.
    Geromanos SJ; Hughes C; Ciavarini S; Vissers JP; Langridge JI
    Anal Bioanal Chem; 2012 Sep; 404(4):1127-39. PubMed ID: 22811061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trade-off between high sensitivity and increased potential for false positive peptide sequence matches using a two-dimensional linear ion trap for tandem mass spectrometry-based proteomics.
    Xie H; Griffin TJ
    J Proteome Res; 2006 Apr; 5(4):1003-9. PubMed ID: 16602709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional ion mobility analyses of proteins and peptides.
    Shvartsburg AA; Tang K; Smith RD
    Methods Mol Biol; 2009; 492():417-45. PubMed ID: 19241049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable-Velocity Traveling-Wave Ion Mobility Separation Enhancing Peak Capacity for Data-Independent Acquisition Proteomics.
    Haynes SE; Polasky DA; Dixit SM; Majmudar JD; Neeson K; Ruotolo BT; Martin BR
    Anal Chem; 2017 Jun; 89(11):5669-5672. PubMed ID: 28471653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies.
    Bush MF; Campuzano ID; Robinson CV
    Anal Chem; 2012 Aug; 84(16):7124-30. PubMed ID: 22845859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS).
    Bonneil E; Pfammatter S; Thibault P
    J Mass Spectrom; 2015 Nov; 50(11):1181-95. PubMed ID: 26505763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing bottom-up and top-down proteomic measurements with ion mobility separations.
    Baker ES; Burnum-Johnson KE; Ibrahim YM; Orton DJ; Monroe ME; Kelly RT; Moore RJ; Zhang X; Théberge R; Costello CE; Smith RD
    Proteomics; 2015 Aug; 15(16):2766-76. PubMed ID: 26046661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexity and scoring function of MS/MS peptide de novo sequencing.
    Xu C; Ma B
    Comput Syst Bioinformatics Conf; 2006; ():361-9. PubMed ID: 17369655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peak intensity prediction in MALDI-TOF mass spectrometry: a machine learning study to support quantitative proteomics.
    Timm W; Scherbart A; Böcker S; Kohlbacher O; Nattkemper TW
    BMC Bioinformatics; 2008 Oct; 9():443. PubMed ID: 18937839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.