These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 23815370)

  • 1. Resonant microwave absorption in thermally deposited au nanoparticle films near percolation coverage.
    Obrzut J; Douglas JF; Kirillov O; Sharifi F; Liddle JA
    Langmuir; 2013 Jul; 29(28):9010-5. PubMed ID: 23815370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave conductivity of very thin graphene and metal films.
    Krupka J; Strupinski W; Kwietniewski N
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3358-62. PubMed ID: 21776709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks.
    Simien D; Fagan JA; Luo W; Douglas JF; Migler K; Obrzut J
    ACS Nano; 2008 Sep; 2(9):1879-84. PubMed ID: 19206428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creating opal-templated continuous conducting polymer films with ultralow percolation thresholds using thermally stable nanoparticles.
    Kang DJ; Kwon T; Kim MP; Cho CH; Jung H; Bang J; Kim BJ
    ACS Nano; 2011 Nov; 5(11):9017-27. PubMed ID: 21961852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.
    Cleveland D; Stchur P; Hou X; Yang KX; Zhou J; Michel RG
    Appl Spectrosc; 2005 Dec; 59(12):1427-44. PubMed ID: 16390581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gating of enhanced electron-charging thresholds in self-assembled nanoparticle films.
    Suganuma Y; Dhirani AA
    J Phys Chem B; 2005 Aug; 109(32):15391-6. PubMed ID: 16852952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Au with thin ZrO2 films: influence of ZrO2 morphology on the adsorption and thermal stability of Au nanoparticles.
    Pan Y; Gao Y; Kong D; Wang G; Hou J; Hu S; Pan H; Zhu J
    Langmuir; 2012 Apr; 28(14):6045-51. PubMed ID: 22424149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave absorption in powders of small conducting particles for heating applications.
    Porch A; Slocombe D; Edwards PP
    Phys Chem Chem Phys; 2013 Feb; 15(8):2757-63. PubMed ID: 23321957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy.
    Ohta N; Nomura K; Yagi I
    Langmuir; 2010 Dec; 26(23):18097-104. PubMed ID: 21043469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles.
    Wen SL; Liu Y; Zhao XC; Cheng JW; Li H
    Phys Chem Chem Phys; 2014 Sep; 16(34):18333-40. PubMed ID: 25066585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optoelectronic properties of graphene thin films deposited by a Langmuir-Blodgett assembly.
    Kim H; Mattevi C; Kim HJ; Mittal A; Mkhoyan KA; Riman RE; Chhowalla M
    Nanoscale; 2013 Dec; 5(24):12365-74. PubMed ID: 24162721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locking carbon nanotubes in confined lattice geometries--a route to low percolation in conducting composites.
    Jurewicz I; Worajittiphon P; King AA; Sellin PJ; Keddie JL; Dalton AB
    J Phys Chem B; 2011 May; 115(20):6395-400. PubMed ID: 21434618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon.
    Liu Y; Yang S; Hong J; Sun C
    J Hazard Mater; 2007 Apr; 142(1-2):208-15. PubMed ID: 16982137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductivity Extraction Using a 180 GHz Quasi-Optical Resonator for Conductive Thin Film Deposited on Conductive Substrate.
    Ye M; Zhao XL; Li WD; Zhou Y; Chen JY; He YN
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33233851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband method for precise microwave spectroscopy of superconducting thin films near the critical temperature.
    Kitano H; Ohashi T; Maeda A
    Rev Sci Instrum; 2008 Jul; 79(7):074701. PubMed ID: 18681723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanoparticles on polarizable surfaces as Raman scattering antennas.
    Chen SY; Mock JJ; Hill RT; Chilkoti A; Smith DR; Lazarides AA
    ACS Nano; 2010 Nov; 4(11):6535-46. PubMed ID: 21038892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic consideration of the surface potential built across phthalocyanine thin films on a metal electrode.
    Manaka T; Li CQ; Cheng XM; Iwamoto M
    J Chem Phys; 2004 Apr; 120(16):7725-32. PubMed ID: 15267684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental approach to the percolation of sticky nanotubes.
    Vigolo B; Coulon C; Maugey M; Zakri C; Poulin P
    Science; 2005 Aug; 309(5736):920-3. PubMed ID: 16081733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold.
    Enders D; Nagao T; Pucci A; Nakayama T; Aono M
    Phys Chem Chem Phys; 2011 Mar; 13(11):4935-41. PubMed ID: 21293799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target patterns induced by fixed nanoparticles in block copolymer films.
    Zhang X; Lacerda SH; Yager KG; Berry BC; Douglas JF; Jones RL; Karim A
    ACS Nano; 2009 Aug; 3(8):2115-20. PubMed ID: 19630381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.