These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 23815378)
21. Preparation and characterization of a highly macroporous biodegradable composite tissue engineering scaffold. Guan L; Davies JE J Biomed Mater Res A; 2004 Dec; 71(3):480-7. PubMed ID: 15478140 [TBL] [Abstract][Full Text] [Related]
22. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Khojasteh A; Fahimipour F; Eslaminejad MB; Jafarian M; Jahangir S; Bastami F; Tahriri M; Karkhaneh A; Tayebi L Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():780-8. PubMed ID: 27612772 [TBL] [Abstract][Full Text] [Related]
23. Encapsulation of simvastatin in PLGA microspheres loaded into hydrogel loaded BCP porous spongy scaffold as a controlled drug delivery system for bone tissue regeneration. Nath SD; Linh NT; Sadiasa A; Lee BT J Biomater Appl; 2014 Apr; 28(8):1151-63. PubMed ID: 24029488 [TBL] [Abstract][Full Text] [Related]
24. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Cheng Q; Rutledge K; Jabbarzadeh E Ann Biomed Eng; 2013 May; 41(5):904-16. PubMed ID: 23283475 [TBL] [Abstract][Full Text] [Related]
25. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Ramay HR; Zhang M Biomaterials; 2004 Sep; 25(21):5171-80. PubMed ID: 15109841 [TBL] [Abstract][Full Text] [Related]
26. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Qi X; Ye J; Wang Y J Biomed Mater Res A; 2009 Jun; 89(4):980-7. PubMed ID: 18470921 [TBL] [Abstract][Full Text] [Related]
27. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
28. Effects of VEGF loading on scaffold-confined vascularization. Lindhorst D; Tavassol F; von See C; Schumann P; Laschke MW; Harder Y; Bormann KH; Essig H; Kokemüller H; Kampmann A; Voss A; Mülhaupt R; Menger MD; Gellrich NC; Rücker M J Biomed Mater Res A; 2010 Dec; 95(3):783-92. PubMed ID: 20725981 [TBL] [Abstract][Full Text] [Related]
29. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678 [TBL] [Abstract][Full Text] [Related]
30. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering. Huang W; Shi X; Ren L; Du C; Wang Y Biomaterials; 2010 May; 31(15):4278-85. PubMed ID: 20199806 [TBL] [Abstract][Full Text] [Related]
31. Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres. Qi X; Ye J; Wang Y Acta Biomater; 2008 Nov; 4(6):1837-45. PubMed ID: 18555756 [TBL] [Abstract][Full Text] [Related]
32. PLGA+HA/βTCP Scaffold Incorporating Simvastatin: A Promising Biomaterial for Bone Tissue Engineering. Sordi MB; da Cruz ACC; Aragones Á; Cordeiro MMR; de Souza Magini R J Oral Implantol; 2021 Apr; 47(2):93-101. PubMed ID: 32699891 [TBL] [Abstract][Full Text] [Related]
33. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
34. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054 [TBL] [Abstract][Full Text] [Related]
35. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006 [TBL] [Abstract][Full Text] [Related]
36. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related]
37. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
38. Localised controlled release of simvastatin from porous chitosan-gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application. Gentile P; Nandagiri VK; Daly J; Chiono V; Mattu C; Tonda-Turo C; Ciardelli G; Ramtoola Z Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():249-257. PubMed ID: 26652371 [TBL] [Abstract][Full Text] [Related]
39. The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Zheng L; Yang F; Shen H; Hu X; Mochizuki C; Sato M; Wang S; Zhang Y Biomaterials; 2011 Oct; 32(29):7053-9. PubMed ID: 21722953 [TBL] [Abstract][Full Text] [Related]
40. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]