BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23815560)

  • 1. Directed evolution of polymerases to accept nucleotides with nonstandard hydrogen bond patterns.
    Laos R; Shaw R; Leal NA; Gaucher E; Benner S
    Biochemistry; 2013 Aug; 52(31):5288-94. PubMed ID: 23815560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning from directed evolution: Thermus aquaticus DNA polymerase mutants with translesion synthesis activity.
    Obeid S; Schnur A; Gloeckner C; Blatter N; Welte W; Diederichs K; Marx A
    Chembiochem; 2011 Jul; 12(10):1574-80. PubMed ID: 21480455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taq DNA Polymerase Mutants and 2'-Modified Sugar Recognition.
    Schultz HJ; Gochi AM; Chia HE; Ogonowsky AL; Chiang S; Filipovic N; Weiden AG; Hadley EE; Gabriel SE; Leconte AM
    Biochemistry; 2015 Sep; 54(38):5999-6008. PubMed ID: 26334839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies.
    Hirao I; Kimoto M; Yamashige R
    Acc Chem Res; 2012 Dec; 45(12):2055-65. PubMed ID: 22263525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed DNA polymerase evolution: effects of mutations in motif C on the mismatch-extension selectivity of thermus aquaticus DNA polymerase.
    Strerath M; Gloeckner C; Liu D; Schnur A; Marx A
    Chembiochem; 2007 Mar; 8(4):395-401. PubMed ID: 17279590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic incorporation of a third nucleobase pair.
    Yang Z; Sismour AM; Sheng P; Puskar NL; Benner SA
    Nucleic Acids Res; 2007; 35(13):4238-49. PubMed ID: 17576683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Snapshots of an evolved DNA polymerase pre- and post-incorporation of an unnatural nucleotide.
    Singh I; Laos R; Hoshika S; Benner SA; Georgiadis MM
    Nucleic Acids Res; 2018 Sep; 46(15):7977-7988. PubMed ID: 29986111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snapshot of a DNA polymerase while incorporating two consecutive C5-modified nucleotides.
    Obeid S; Bußkamp H; Welte W; Diederichs K; Marx A
    J Am Chem Soc; 2013 Oct; 135(42):15667-9. PubMed ID: 24090271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for a six nucleotide genetic alphabet.
    Georgiadis MM; Singh I; Kellett WF; Hoshika S; Benner SA; Richards NG
    J Am Chem Soc; 2015 Jun; 137(21):6947-55. PubMed ID: 25961938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an efficient RNA polymerase.
    Xia G; Chen L; Sera T; Fa M; Schultz PG; Romesberg FE
    Proc Natl Acad Sci U S A; 2002 May; 99(10):6597-602. PubMed ID: 12011423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases.
    Hottin A; Marx A
    Acc Chem Res; 2016 Mar; 49(3):418-27. PubMed ID: 26947566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template directed incorporation of nucleotide mixtures using azole-nucleobase analogs.
    Hoops GC; Zhang P; Johnson WT; Paul N; Bergstrom DE; Davisson VJ
    Nucleic Acids Res; 1997 Dec; 25(24):4866-71. PubMed ID: 9396789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.
    Ong JL; Loakes D; Jaroslawski S; Too K; Holliger P
    J Mol Biol; 2006 Aug; 361(3):537-50. PubMed ID: 16859707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of an expanded genetic alphabet by type-II restriction endonucleases and their application to analyze polymerase fidelity.
    Chen F; Yang Z; Yan M; Alvarado JB; Wang G; Benner SA
    Nucleic Acids Res; 2011 May; 39(9):3949-61. PubMed ID: 21245035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyses of PCR products using DNA templates containing a consecutive deoxyinosine sequence.
    Kobayashi A; Kitaoka M; Hayashi K
    Nucleic Acids Symp Ser (Oxf); 2004; (48):225-6. PubMed ID: 17150560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach for high-level expression and purification of GST-fused highly thermostable Taq DNA polymerase in Escherichia coli.
    Din RU; Khan MI; Jan A; Khan SA; Ali I
    Arch Microbiol; 2020 Aug; 202(6):1449-1458. PubMed ID: 32189018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assays To Detect the Formation of Triphosphates of Unnatural Nucleotides: Application to Escherichia coli Nucleoside Diphosphate Kinase.
    Matsuura MF; Shaw RW; Moses JD; Kim HJ; Kim MJ; Kim MS; Hoshika S; Karalkar N; Benner SA
    ACS Synth Biol; 2016 Mar; 5(3):234-40. PubMed ID: 26829203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A longer finger-subdomain of family A DNA polymerases found by metagenomic analysis strengthens DNA binding and primer extension abilities.
    Yamagami T; Matsukawa H; Tsunekawa S; Kawarabayasi Y; Ishino S; Ishino Y
    Gene; 2016 Feb; 576(2 Pt 1):690-5. PubMed ID: 26476294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA ligases from thermophilic bacteria enhance PCR amplification of long DNA sequences.
    Ignatov KB; Kramarov VM
    Biochemistry (Mosc); 2009 May; 74(5):557-61. PubMed ID: 19538130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution.
    Ghadessy FJ; Ramsay N; Boudsocq F; Loakes D; Brown A; Iwai S; Vaisman A; Woodgate R; Holliger P
    Nat Biotechnol; 2004 Jun; 22(6):755-9. PubMed ID: 15156154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.