These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 23815589)
1. Identification and analysis of conserved pockets on protein surfaces. Cammisa M; Correra A; Andreotti G; Cubellis MV BMC Bioinformatics; 2013; 14 Suppl 7(Suppl 7):S9. PubMed ID: 23815589 [TBL] [Abstract][Full Text] [Related]
2. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction. Hoffmann B; Zaslavskiy M; Vert JP; Stoven V BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916 [TBL] [Abstract][Full Text] [Related]
3. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets. Ashford P; Moss DS; Alex A; Yeap SK; Povia A; Nobeli I; Williams MA BMC Bioinformatics; 2012 Mar; 13():39. PubMed ID: 22417279 [TBL] [Abstract][Full Text] [Related]
4. Computational approaches for identification of conserved/unique binding pockets in the A chain of ricin. Zhou CL; Zemla AT; Roe D; Young M; Lam M; Schoeniger JS; Balhorn R Bioinformatics; 2005 Jul; 21(14):3089-96. PubMed ID: 15905278 [TBL] [Abstract][Full Text] [Related]
5. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. Capra JA; Laskowski RA; Thornton JM; Singh M; Funkhouser TA PLoS Comput Biol; 2009 Dec; 5(12):e1000585. PubMed ID: 19997483 [TBL] [Abstract][Full Text] [Related]
6. Assessing the structural conservation of protein pockets to study functional and allosteric sites: implications for drug discovery. Panjkovich A; Daura X BMC Struct Biol; 2010 Mar; 10():9. PubMed ID: 20356358 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive identification of "druggable" protein ligand binding sites. An J; Totrov M; Abagyan R Genome Inform; 2004; 15(2):31-41. PubMed ID: 15706489 [TBL] [Abstract][Full Text] [Related]
8. Comparative surface geometry of the protein kinase family. Thompson EE; Kornev AP; Kannan N; Kim C; Ten Eyck LF; Taylor SS Protein Sci; 2009 Oct; 18(10):2016-26. PubMed ID: 19610074 [TBL] [Abstract][Full Text] [Related]
9. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Liang J; Edelsbrunner H; Woodward C Protein Sci; 1998 Sep; 7(9):1884-97. PubMed ID: 9761470 [TBL] [Abstract][Full Text] [Related]
10. APoc: large-scale identification of similar protein pockets. Gao M; Skolnick J Bioinformatics; 2013 Mar; 29(5):597-604. PubMed ID: 23335017 [TBL] [Abstract][Full Text] [Related]
11. Detection of multiscale pockets on protein surfaces using mathematical morphology. Kawabata T Proteins; 2010 Apr; 78(5):1195-211. PubMed ID: 19938154 [TBL] [Abstract][Full Text] [Related]
12. A method for localizing ligand binding pockets in protein structures. Glaser F; Morris RJ; Najmanovich RJ; Laskowski RA; Thornton JM Proteins; 2006 Feb; 62(2):479-88. PubMed ID: 16304646 [TBL] [Abstract][Full Text] [Related]
13. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites. Najmanovich R; Kurbatova N; Thornton J Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810 [TBL] [Abstract][Full Text] [Related]
14. Protein surface conservation in binding sites. Carl N; Konc J; Janezic D J Chem Inf Model; 2008 Jun; 48(6):1279-86. PubMed ID: 18476685 [TBL] [Abstract][Full Text] [Related]
15. webPDBinder: a server for the identification of ligand binding sites on protein structures. Bianchi V; Mangone I; Ferrè F; Helmer-Citterich M; Ausiello G Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W308-13. PubMed ID: 23737450 [TBL] [Abstract][Full Text] [Related]
16. Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites. Kawabata T; Go N Proteins; 2007 Aug; 68(2):516-29. PubMed ID: 17444522 [TBL] [Abstract][Full Text] [Related]
17. An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure. Bhagavat R; Sankar S; Srinivasan N; Chandra N Structure; 2018 Mar; 26(3):499-512.e2. PubMed ID: 29514079 [TBL] [Abstract][Full Text] [Related]
18. Identification of protein functional surfaces by the concept of a split pocket. Tseng YY; Li WH Proteins; 2009 Sep; 76(4):959-76. PubMed ID: 19326458 [TBL] [Abstract][Full Text] [Related]
19. Identification of ligand-binding pockets in proteins using residue preference methods. Qiu Z; Wang X Protein Pept Lett; 2009; 16(8):984-90. PubMed ID: 19689426 [TBL] [Abstract][Full Text] [Related]
20. Residue conservation information for generating near-native structures in protein-protein docking. Duan Y; Reddy BV; Kaznessis YN J Bioinform Comput Biol; 2006 Aug; 4(4):793-806. PubMed ID: 17007068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]