BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23815591)

  • 1. Transmembrane domain V plays a stabilizing role in the function of human bile acid transporter SLC10A2.
    Moore RH; Chothe P; Swaan PW
    Biochemistry; 2013 Jul; 52(30):5117-24. PubMed ID: 23815591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane helix 1 contributes to substrate translocation and protein stability of bile acid transporter SLC10A2.
    da Silva TC; Hussainzada N; Khantwal CM; Polli JE; Swaan PW
    J Biol Chem; 2011 Aug; 286(31):27322-32. PubMed ID: 21646357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane domain II of the human bile acid transporter SLC10A2 coordinates sodium translocation.
    Sabit H; Mallajosyula SS; MacKerell AD; Swaan PW
    J Biol Chem; 2013 Nov; 288(45):32394-32404. PubMed ID: 24045943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytosolic half of transmembrane domain IV of the human bile acid transporter hASBT (SLC10A2) forms part of the substrate translocation pathway.
    Khantwal CM; Swaan PW
    Biochemistry; 2008 Mar; 47(12):3606-14. PubMed ID: 18311924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human bile acid transporter ASBT (SLC10A2) forms functional non-covalent homodimers and higher order oligomers.
    Chothe PP; Czuba LC; Moore RH; Swaan PW
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):645-653. PubMed ID: 29198943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmembrane domain VII of the human apical sodium-dependent bile acid transporter ASBT (SLC10A2) lines the substrate translocation pathway.
    Hussainzada N; Banerjee A; Swaan PW
    Mol Pharmacol; 2006 Nov; 70(5):1565-74. PubMed ID: 16899538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis and use of bile acid-MTS conjugates to probe the role of cysteines in the human apical sodium-dependent bile acid transporter (SLC10A2).
    Banerjee A; Ray A; Chang C; Swaan PW
    Biochemistry; 2005 Jun; 44(24):8908-17. PubMed ID: 15952798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cytosolic half of helix III forms the substrate exit route during permeation events of the sodium/bile acid cotransporter ASBT.
    Hussainzada N; Claro Da Silva T; Swaan PW
    Biochemistry; 2009 Sep; 48(36):8528-39. PubMed ID: 19653651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Putative irreversible inhibitors of the human sodium-dependent bile acid transporter (hASBT; SLC10A2) support the role of transmembrane domain 7 in substrate binding/translocation.
    González PM; Hussainzada N; Swaan PW; Mackerell AD; Polli JE
    Pharm Res; 2012 Jul; 29(7):1821-31. PubMed ID: 22354836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of uncharged polar residues and proline in the proximal two-thirds (Pro107-Ser128) of the highly conserved region of mouse ileal Na+-dependent bile acid transporter, Slc10a2, in transport activity and cellular expression.
    Saeki T; Sato K; Ito S; Ikeda K; Kanamoto R
    BMC Physiol; 2013 Feb; 13():4. PubMed ID: 23374508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational flexibility of helix VI is essential for substrate permeation of the human apical sodium-dependent bile acid transporter.
    Hussainzada N; Khandewal A; Swaan PW
    Mol Pharmacol; 2008 Feb; 73(2):305-13. PubMed ID: 17971420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosine Phosphorylation Regulates Plasma Membrane Expression and Stability of the Human Bile Acid Transporter ASBT (
    Chothe PP; Czuba LC; Ayewoh EN; Swaan PW
    Mol Pharm; 2019 Aug; 16(8):3569-3576. PubMed ID: 31194565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topology scanning and putative three-dimensional structure of the extracellular binding domains of the apical sodium-dependent bile acid transporter (SLC10A2).
    Zhang EY; Phelps MA; Banerjee A; Khantwal CM; Chang C; Helsper F; Swaan PW
    Biochemistry; 2004 Sep; 43(36):11380-92. PubMed ID: 15350125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a region of the ileal-type sodium/bile acid cotransporter interacting with a competitive bile acid transport inhibitor.
    Hallén S; Björquist A; Ostlund-Lindqvist AM; Sachs G
    Biochemistry; 2002 Dec; 41(50):14916-24. PubMed ID: 12475240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of novel synthetic MTS conjugates of bile acids for site-directed sulfhydryl labeling of cysteine residues in bile acid binding and transporting proteins.
    Ray A; Banerjee A; Chang C; Khantwal CM; Swaan PW
    Bioorg Med Chem Lett; 2006 Mar; 16(6):1473-6. PubMed ID: 16387497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane topology of human ASBT (SLC10A2) determined by dual label epitope insertion scanning mutagenesis. New evidence for seven transmembrane domains.
    Banerjee A; Swaan PW
    Biochemistry; 2006 Jan; 45(3):943-53. PubMed ID: 16411770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmembrane helix 7 in the Na+/dicarboxylate cotransporter 1 is an outer helix that contains residues critical for function.
    Pajor AM; Sun NN; Joshi AD; Randolph KM
    Biochim Biophys Acta; 2011 Jun; 1808(6):1454-61. PubMed ID: 21073858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2).
    Lionarons DA; Boyer JL; Cai SY
    J Lipid Res; 2012 Aug; 53(8):1535-42. PubMed ID: 22669917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic and potential cation-pi forces may guide the interaction of extracellular loop III with Na+ and bile acids for human apical Na+-dependent bile acid transporter.
    Banerjee A; Hussainzada N; Khandelwal A; Swaan PW
    Biochem J; 2008 Mar; 410(2):391-400. PubMed ID: 18028035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-acylation status of bile acid transporter hASBT regulates its function, metabolic stability, membrane expression, and phosphorylation state.
    Ayewoh EN; Czuba LC; Nguyen TT; Swaan PW
    Biochim Biophys Acta Biomembr; 2021 Feb; 1863(2):183510. PubMed ID: 33189717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.