These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 23815806)
1. Bacterial bioaugmentation for improving methane and hydrogen production from microalgae. Lü F; Ji J; Shao L; He P Biotechnol Biofuels; 2013 Jul; 6(1):92. PubMed ID: 23815806 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of microbial diversity and methane yield by bacterial bioaugmentation through the anaerobic digestion of Haematococcus pluvialis. Aydin S Appl Microbiol Biotechnol; 2016 Jun; 100(12):5631-7. PubMed ID: 27067588 [TBL] [Abstract][Full Text] [Related]
3. Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Mulat DG; Huerta SG; Kalyani D; Horn SJ Biotechnol Biofuels; 2018; 11():19. PubMed ID: 29422947 [TBL] [Abstract][Full Text] [Related]
4. Bioaugmentation with Clostridium thermocellum to enhance the anaerobic biodegradation of lignocellulosic agricultural residues. Ecem Öner B; Akyol Ç; Bozan M; Ince O; Aydin S; Ince B Bioresour Technol; 2018 Feb; 249():620-625. PubMed ID: 29091846 [TBL] [Abstract][Full Text] [Related]
5. Thermal pretreatment and bioaugmentation improve methane yield of microalgal mix produced in thermophilic anaerobic digestate. Lavrič L; Cerar A; Fanedl L; Lazar B; Žitnik M; Logar RM Anaerobe; 2017 Aug; 46():162-169. PubMed ID: 28189831 [TBL] [Abstract][Full Text] [Related]
6. Enhanced bioenergy recovery from oil-extracted microalgae residues via two-step H2/CH4 or H2/butanol anaerobic fermentation. Cheng HH; Whang LM; Wu SH Biotechnol J; 2016 Mar; 11(3):375-83. PubMed ID: 26663890 [TBL] [Abstract][Full Text] [Related]
7. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
8. Investigation on hydrogen production from paper sludge without inoculation and its enhancement by Clostridium thermocellum. An Q; Wang JL; Wang YT; Lin ZL; Zhu MJ Bioresour Technol; 2018 Sep; 263():120-127. PubMed ID: 29738974 [TBL] [Abstract][Full Text] [Related]
9. Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Lakaniemi AM; Hulatt CJ; Thomas DN; Tuovinen OH; Puhakka JA Biotechnol Biofuels; 2011 Sep; 4(1):34. PubMed ID: 21943287 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of biogas production from microalgal biomass through cellulolytic bacterial pretreatment. Kavitha S; Subbulakshmi P; Rajesh Banu J; Gobi M; Tae Yeom I Bioresour Technol; 2017 Jun; 233():34-43. PubMed ID: 28258994 [TBL] [Abstract][Full Text] [Related]
11. Thermophilic Alkaline Fermentation Followed by Mesophilic Anaerobic Digestion for Efficient Hydrogen and Methane Production from Waste-Activated Sludge: Dynamics of Bacterial Pathogens as Revealed by the Combination of Metagenomic and Quantitative PCR Analyses. Wan J; Jing Y; Rao Y; Zhang S; Luo G Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330191 [TBL] [Abstract][Full Text] [Related]
13. Biohydrogen and methane production via a two-step process using an acid pretreated native microalgae consortium. Carrillo-Reyes J; Buitrón G Bioresour Technol; 2016 Dec; 221():324-330. PubMed ID: 27648852 [TBL] [Abstract][Full Text] [Related]
14. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw. Ozbayram EG; Kleinsteuber S; Nikolausz M; Ince B; Ince O Anaerobe; 2017 Aug; 46():122-130. PubMed ID: 28323135 [TBL] [Abstract][Full Text] [Related]
15. Use of a marine microbial community as inoculum for biomethane production. Fistarol GO; Rosato M; Thompson FL; do Valle Rde A; Garcia-BlairsyReina G; Salomon PS Environ Technol; 2016; 37(3):360-8. PubMed ID: 26227555 [TBL] [Abstract][Full Text] [Related]
16. Enhanced bio-energy recovery in a two-stage hydrogen/methane fermentation process. Lee MJ; Song JH; Hwang SJ Water Sci Technol; 2009; 59(11):2137-43. PubMed ID: 19494452 [TBL] [Abstract][Full Text] [Related]
17. Contributing factors in the improvement of cellulosic H2 production in Clostridium thermocellum/Thermoanaerobacterium co-cultures. Wang M; Zhao Q; Li L; Niu K; Li Y; Wang F; Jiang B; Liu K; Jiang Y; Fang X Appl Microbiol Biotechnol; 2016 Oct; 100(19):8607-20. PubMed ID: 27538932 [TBL] [Abstract][Full Text] [Related]
18. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia. Yang Z; Guo R; Xu X; Wang L; Dai M Bioresour Technol; 2016 Sep; 216():471-7. PubMed ID: 27262722 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Luo G; Xie L; Zhou Q; Angelidaki I Bioresour Technol; 2011 Sep; 102(18):8700-6. PubMed ID: 21353538 [TBL] [Abstract][Full Text] [Related]
20. Enhanced coproduction of hydrogen and methane from cornstalks by a three-stage anaerobic fermentation process integrated with alkaline hydrolysis. Cheng XY; Liu CZ Bioresour Technol; 2012 Jan; 104():373-9. PubMed ID: 22104098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]