BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 23816524)

  • 1. Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent β1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction.
    Liu CC; Karimi Galougahi K; Weisbrod RM; Hansen T; Ravaie R; Nunez A; Liu YB; Fry N; Garcia A; Hamilton EJ; Sweadner KJ; Cohen RA; Figtree GA
    Free Radic Biol Med; 2013 Dec; 65():563-572. PubMed ID: 23816524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.
    Figtree GA; Liu CC; Bibert S; Hamilton EJ; Garcia A; White CN; Chia KK; Cornelius F; Geering K; Rasmussen HH
    Circ Res; 2009 Jul; 105(2):185-93. PubMed ID: 19542013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition.
    Chia KK; Liu CC; Hamilton EJ; Garcia A; Fry NA; Hannam W; Figtree GA; Rasmussen HH
    Am J Physiol Cell Physiol; 2015 Aug; 309(4):C239-50. PubMed ID: 26084308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin II inhibits the Na+-K+ pump via PKC-dependent activation of NADPH oxidase.
    White CN; Figtree GA; Liu CC; Garcia A; Hamilton EJ; Chia KK; Rasmussen HH
    Am J Physiol Cell Physiol; 2009 Apr; 296(4):C693-700. PubMed ID: 19193863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its beta1 subunit.
    Bibert S; Liu CC; Figtree GA; Garcia A; Hamilton EJ; Marassi FM; Sweadner KJ; Cornelius F; Geering K; Rasmussen HH
    J Biol Chem; 2011 May; 286(21):18562-72. PubMed ID: 21454534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathionylation mediates angiotensin II-induced eNOS uncoupling, amplifying NADPH oxidase-dependent endothelial dysfunction.
    Galougahi KK; Liu CC; Gentile C; Kok C; Nunez A; Garcia A; Fry NA; Davies MJ; Hawkins CL; Rasmussen HH; Figtree GA
    J Am Heart Assoc; 2014 Apr; 3(2):e000731. PubMed ID: 24755153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity.
    White CN; Liu CC; Garcia A; Hamilton EJ; Chia KK; Figtree GA; Rasmussen HH
    J Biol Chem; 2010 Apr; 285(18):13712-20. PubMed ID: 20194511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling.
    Galougahi KK; Liu CC; Garcia A; Fry NA; Hamilton EJ; Rasmussen HH; Figtree GA
    J Physiol; 2013 Jun; 591(12):2999-3015. PubMed ID: 23587884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Susceptibility of β1 Na+-K+ pump subunit to glutathionylation and oxidative inhibition depends on conformational state of pump.
    Liu CC; Garcia A; Mahmmoud YA; Hamilton EJ; Galougahi KK; Fry NA; Figtree GA; Cornelius F; Clarke RJ; Rasmussen HH
    J Biol Chem; 2012 Apr; 287(15):12353-64. PubMed ID: 22354969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-dependent regulation of the Na⁺-K⁺ pump: new twists to an old target for treatment of heart failure.
    Liu CC; Fry NA; Hamilton EJ; Chia KK; Garcia A; Karimi Galougahi K; Figtree GA; Clarke RJ; Bundgaard H; Rasmussen HH
    J Mol Cell Cardiol; 2013 Aug; 61():94-101. PubMed ID: 23727392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.
    Karimi Galougahi K; Liu CC; Garcia A; Fry NA; Hamilton EJ; Figtree GA; Rasmussen HH
    Am J Physiol Cell Physiol; 2015 Sep; 309(5):C286-95. PubMed ID: 26063704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative regulation of the Na(+)-K(+) pump in the cardiovascular system.
    Figtree GA; Keyvan Karimi G; Liu CC; Rasmussen HH
    Free Radic Biol Med; 2012 Dec; 53(12):2263-8. PubMed ID: 23085513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-glutathionylation of the Na+-K+ Pump: A Novel Redox Mechanism in Preeclampsia.
    Liu CC; Zhang Y; Makris A; Rasmussen HH; Hennessy A
    J Clin Endocrinol Metab; 2021 Mar; 106(4):1091-1100. PubMed ID: 33382878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β3 Adrenergic Stimulation Restores Nitric Oxide/Redox Balance and Enhances Endothelial Function in Hyperglycemia.
    Karimi Galougahi K; Liu CC; Garcia A; Gentile C; Fry NA; Hamilton EJ; Hawkins CL; Figtree GA
    J Am Heart Assoc; 2016 Feb; 5(2):. PubMed ID: 26896479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.
    Garcia A; Liu CC; Cornelius F; Clarke RJ; Rasmussen HH
    Biophys J; 2016 Mar; 110(5):1099-109. PubMed ID: 26958887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of oxidative stress in angiotensin II-induced enhanced expression of Gi(alpha) proteins and adenylyl cyclase signaling in A10 vascular smooth muscle cells.
    Li Y; Lappas G; Anand-Srivastava MB
    Am J Physiol Heart Circ Physiol; 2007 Apr; 292(4):H1922-30. PubMed ID: 17158644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiotensin II regulation of the Na+ pump involves the phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways in vascular smooth muscle cells.
    Isenovic ER; Jacobs DB; Kedees MH; Sha Q; Milivojevic N; Kawakami K; Gick G; Sowers JR
    Endocrinology; 2004 Mar; 145(3):1151-60. PubMed ID: 14630723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II.
    Touyz RM; Chen X; Tabet F; Yao G; He G; Quinn MT; Pagano PJ; Schiffrin EL
    Circ Res; 2002 Jun; 90(11):1205-13. PubMed ID: 12065324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification.
    Bundgaard H; Liu CC; Garcia A; Hamilton EJ; Huang Y; Chia KK; Hunyor SN; Figtree GA; Rasmussen HH
    Circulation; 2010 Dec; 122(25):2699-708. PubMed ID: 21135361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.