These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 23817215)
21. Limb-girdle muscular dystrophy type 2I is not rare in Taiwan. Liang WC; Hayashi YK; Ogawa M; Wang CH; Huang WT; Nishino I; Jong YJ Neuromuscul Disord; 2013 Aug; 23(8):675-81. PubMed ID: 23800702 [TBL] [Abstract][Full Text] [Related]
22. Sexually dimorphic skeletal muscle and cardiac dysfunction in a mouse model of limb girdle muscular dystrophy 2i. Maricelli JW; Kagel DR; Bishaw YM; Nelson OL; Lin DC; Rodgers BD J Appl Physiol (1985); 2017 Nov; 123(5):1126-1138. PubMed ID: 28663375 [TBL] [Abstract][Full Text] [Related]
23. Reduced expression of fukutin related protein in mice results in a model for fukutin related protein associated muscular dystrophies. Ackroyd MR; Skordis L; Kaluarachchi M; Godwin J; Prior S; Fidanboylu M; Piercy RJ; Muntoni F; Brown SC Brain; 2009 Feb; 132(Pt 2):439-51. PubMed ID: 19155270 [TBL] [Abstract][Full Text] [Related]
24. Adeno-associated viral-mediated LARGE gene therapy rescues the muscular dystrophic phenotype in mouse models of dystroglycanopathy. Yu M; He Y; Wang K; Zhang P; Zhang S; Hu H Hum Gene Ther; 2013 Mar; 24(3):317-30. PubMed ID: 23379513 [TBL] [Abstract][Full Text] [Related]
25. Improved efficacy of FKRP AAV gene therapy by combination with ribitol treatment for LGMD2I. Cataldi MP; Vannoy CH; Blaeser A; Tucker JD; Leroy V; Rawls R; Killilee J; Holbrook MC; Lu QL Mol Ther; 2023 Dec; 31(12):3478-3489. PubMed ID: 37919902 [TBL] [Abstract][Full Text] [Related]
26. A limb-girdle muscular dystrophy 2I model of muscular dystrophy identifies corrective drug compounds for dystroglycanopathies. Serafini PR; Feyder MJ; Hightower RM; Garcia-Perez D; Vieira NM; Lek A; Gibbs DE; Moukha-Chafiq O; Augelli-Szafran CE; Kawahara G; Widrick JJ; Kunkel LM; Alexander MS JCI Insight; 2018 Sep; 3(18):. PubMed ID: 30232282 [TBL] [Abstract][Full Text] [Related]
27. Metabolomics Analysis of Skeletal Muscles from FKRP-Deficient Mice Indicates Improvement After Gene Replacement Therapy. Vannoy CH; Leroy V; Broniowska K; Lu QL Sci Rep; 2019 Jul; 9(1):10070. PubMed ID: 31296900 [TBL] [Abstract][Full Text] [Related]
28. CRISPR-Cas9 KO Cell Line Generation and Development of a Cell-Based Potency Assay for rAAV-FKRP Gene Therapy. Geoffroy M; Pili L; Buffa V; Caroff M; Bigot A; Gicquel E; Rouby G; Richard I; Fragnoud R Cells; 2023 Oct; 12(20):. PubMed ID: 37887288 [TBL] [Abstract][Full Text] [Related]
29. A universal gene correction approach for FKRP-associated dystroglycanopathies to enable autologous cell therapy. Dhoke NR; Kim H; Selvaraj S; Azzag K; Zhou H; Oliveira NAJ; Tungtur S; Ortiz-Cordero C; Kiley J; Lu QL; Bang AG; Perlingeiro RCR Cell Rep; 2021 Jul; 36(2):109360. PubMed ID: 34260922 [TBL] [Abstract][Full Text] [Related]
30. Expression of glycosylated α-dystroglycan in newborn skeletal and cardiac muscles of fukutin related protein (FKRP) mutant mice. Keramaris E; Lu PJ; Tucker J; Lu QL Muscle Nerve; 2017 Apr; 55(4):582-590. PubMed ID: 27515093 [TBL] [Abstract][Full Text] [Related]
31. Prenatal muscle development in a mouse model for the secondary dystroglycanopathies. Kim J; Hopkinson M; Kavishwar M; Fernandez-Fuente M; Brown SC Skelet Muscle; 2016; 6():3. PubMed ID: 26900448 [TBL] [Abstract][Full Text] [Related]
33. A fourth case of POMT2-related limb girdle muscle dystrophy with mild reduction of α-dystroglycan glycosylation. Saredi S; Gibertini S; Ardissone A; Fusco I; Zanotti S; Blasevich F; Morandi L; Moroni I; Mora M Eur J Paediatr Neurol; 2014 May; 18(3):404-8. PubMed ID: 24183756 [TBL] [Abstract][Full Text] [Related]
34. Functional requirements for fukutin-related protein in the Golgi apparatus. Esapa CT; Benson MA; Schröder JE; Martin-Rendon E; Brockington M; Brown SC; Muntoni F; Kröger S; Blake DJ Hum Mol Genet; 2002 Dec; 11(26):3319-31. PubMed ID: 12471058 [TBL] [Abstract][Full Text] [Related]
35. Glucocorticoid Steroid and Alendronate Treatment Alleviates Dystrophic Phenotype with Enhanced Functional Glycosylation of α-Dystroglycan in Mouse Model of Limb-Girdle Muscular Dystrophy with FKRPP448L Mutation. Wu B; Shah SN; Lu P; Richardson SM; Bollinger LE; Blaeser A; Madden KL; Sun Y; Luckie TM; Cox MD; Sparks S; Harper AD; Lu QL Am J Pathol; 2016 Jun; 186(6):1635-48. PubMed ID: 27109613 [TBL] [Abstract][Full Text] [Related]
36. Elevated serum creatine kinase and small cerebellum prompt diagnosis of congenital muscular dystrophy due to FKRP mutations. Trovato R; Astrea G; Bartalena L; Ghirri P; Baldacci J; Giampietri M; Battini R; Santorelli FM; Fiorillo C J Child Neurol; 2014 Mar; 29(3):394-8. PubMed ID: 23420653 [TBL] [Abstract][Full Text] [Related]
37. FKRP-dependent glycosylation of fibronectin regulates muscle pathology in muscular dystrophy. Wood AJ; Lin CH; Li M; Nishtala K; Alaei S; Rossello F; Sonntag C; Hersey L; Miles LB; Krisp C; Dudczig S; Fulcher AJ; Gibertini S; Conroy PJ; Siegel A; Mora M; Jusuf P; Packer NH; Currie PD Nat Commun; 2021 May; 12(1):2951. PubMed ID: 34012031 [TBL] [Abstract][Full Text] [Related]
38. Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP). Thornhill P; Bassett D; Lochmüller H; Bushby K; Straub V Brain; 2008 Jun; 131(Pt 6):1551-61. PubMed ID: 18477595 [TBL] [Abstract][Full Text] [Related]
39. FKRP mutations cause congenital muscular dystrophy 1C and limb-girdle muscular dystrophy 2I in Asian patients. Awano H; Saito Y; Shimizu M; Sekiguchi K; Niijima S; Matsuo M; Maegaki Y; Izumi I; Kikuchi C; Ishibashi M; Okazaki T; Komaki H; Iijima K; Nishino I J Clin Neurosci; 2021 Oct; 92():215-221. PubMed ID: 34509255 [TBL] [Abstract][Full Text] [Related]