These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 2381764)

  • 1. Optical evidence for a chloride conductance in the T-system of frog skeletal muscle.
    Heiny JA; Valle JR; Bryant SH
    Pflugers Arch; 1990 May; 416(3):288-95. PubMed ID: 2381764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers.
    Eisenberg RS; Gage PW
    J Gen Physiol; 1969 Mar; 53(3):279-97. PubMed ID: 5767333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The voltage dependence of the chloride conductance of frog muscle.
    Hutter OF; Warner AE
    J Physiol; 1972 Dec; 227(1):275-90. PubMed ID: 4539587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride-dependence of the actions of phlorizin on frog skeletal muscle membrane.
    Cseri J; Varga E
    Acta Physiol Hung; 1987; 69(1):3-14. PubMed ID: 3495955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detubulation effects on the action of zinc on frog skeletal muscle action potential.
    Sandow A; Pagala MK
    J Membr Biol; 1978 Jul; 41(4):309-21. PubMed ID: 308543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved vaseline gap voltage clamp for skeletal muscle fibers.
    Hille B; Campbell DT
    J Gen Physiol; 1976 Mar; 67(3):265-93. PubMed ID: 1083424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cytochalasin B on the electrical activity of frog muscle fibers.
    Sevcik C; Narahashi T; Van den Bercken J
    Eur J Pharmacol; 1976 Mar; 36(1):173-80. PubMed ID: 1083342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride action potentials and currents in embryonic skeletal muscle of the chick.
    Steele JA
    J Cell Physiol; 1990 Mar; 142(3):603-9. PubMed ID: 2155911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids.
    Bryant SH; Morales-Aguilera A
    J Physiol; 1971 Dec; 219(2):367-83. PubMed ID: 5316641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inward rectification in the transverse tubular system of frog skeletal muscle studied with potentiometric dyes.
    Ashcroft FM; Heiny JA; Vergara J
    J Physiol; 1985 Feb; 359():269-91. PubMed ID: 3873536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of gramicidin A on the K+ conductance of the membrane of isolated frog skeletal muscle fibres.
    Caffier G; Shvinka N
    Acta Biol Med Ger; 1979; 38(1):135-7. PubMed ID: 92868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of valinomycin on striated muscles of the frog and the crayfish.
    Hinkle M; Van der Kloot W
    Comp Biochem Physiol A Comp Physiol; 1973 Oct; 46(2):269-78. PubMed ID: 4147895
    [No Abstract]   [Full Text] [Related]  

  • 13. Ionic membrane conductance during the time course of the cardiac action potential.
    Goldman Y; Morad M
    J Physiol; 1977 Jul; 268(3):655-95. PubMed ID: 560474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of phlorizin and phloretin on passive and dynamic electrical properties in muscle membrane.
    Cseri J; Nánási PP; Varga E
    Acta Physiol Hung; 1987; 69(1):21-32. PubMed ID: 3495954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pH sensitivity of the chloride conductance of frog skeletal muscle.
    Hutter OF; Warner AE
    J Physiol; 1967 Apr; 189(3):403-25. PubMed ID: 6040154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda).
    Costa PM; Fernandes PL; Ferreira HG; Ferreira KT; Giraldez F
    J Physiol; 1987 Dec; 393():1-17. PubMed ID: 2451735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T-system optical signals associated with inward rectification in skeletal muscle.
    Heiny JA; Ashcroft FM; Vergara J
    Nature; 1983 Jan; 301(5896):164-6. PubMed ID: 6296689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in membrane ionic conductances and excitability characteristics of rat skeletal muscle during aging.
    De Luca A; Mambrini M; Conte Camerino D
    Pflugers Arch; 1990 Feb; 415(5):642-4. PubMed ID: 2326156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramembrane charge movements in frog skeletal muscle in strongly hypertonic solutions.
    Huang CL
    J Gen Physiol; 1992 Apr; 99(4):531-44. PubMed ID: 1597677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical signals from surface and T system membranes in skeletal muscle fibers. Experiments with the potentiometric dye NK2367.
    Heiny JA; Vergara J
    J Gen Physiol; 1982 Aug; 80(2):203-30. PubMed ID: 6981683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.