These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23817864)

  • 1. Internal structure-mediated ultrafast energy transfer in self-assembled polymer-blend dots.
    Wang L; Wu CF; Wang HY; Wang YF; Chen QD; Han W; Qin WP; McNeill J; Sun HB
    Nanoscale; 2013 Aug; 5(16):7265-70. PubMed ID: 23817864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy transfer mediated fluorescence from blended conjugated polymer nanoparticles.
    Wu C; Peng H; Jiang Y; McNeill J
    J Phys Chem B; 2006 Jul; 110(29):14148-54. PubMed ID: 16854113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optoelectronic and charge transport properties at organic-organic semiconductor interfaces: comparison between polyfluorene-based polymer blend and copolymer.
    Kim JS; Lu L; Sreearunothai P; Seeley A; Yim KH; Petrozza A; Murphy CE; Beljonne D; Cornil J; Friend RH
    J Am Chem Soc; 2008 Oct; 130(39):13120-31. PubMed ID: 18767836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Charge Separation and FRET at Heterojunctions between Semiconductor Nanoparticles and Conducting Polymer Nanofibers for Efficient Solar Light Harvesting.
    Sardar S; Kar P; Remita H; Liu B; Lemmens P; Kumar Pal S; Ghosh S
    Sci Rep; 2015 Nov; 5():17313. PubMed ID: 26611253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-radiative resonance energy transfer in bi-polymer nanoparticles of fluorescent conjugated polymers.
    Ozel IO; Ozel T; Demir HV; Tuncel D
    Opt Express; 2010 Jan; 18(2):670-84. PubMed ID: 20173887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.
    Guzelturk B; Demir HV
    J Phys Chem Lett; 2015 Jun; 6(12):2206-15. PubMed ID: 26266593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone.
    Lee BR; Lee W; Nguyen TL; Park JS; Kim JS; Kim JY; Woo HY; Song MH
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5690-5. PubMed ID: 23697817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotubular J-aggregates and quantum dots coupled for efficient resonance excitation energy transfer.
    Qiao Y; Polzer F; Kirmse H; Steeg E; Kühn S; Friede S; Kirstein S; Rabe JP
    ACS Nano; 2015 Feb; 9(2):1552-60. PubMed ID: 25555126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient hybrid solar cells using PbS(x)Se(1-x) quantum dots and nanorods for broad-range photon absorption and well-assembled charge transfer networks.
    Nam M; Kim S; Kim S; Kim SW; Lee K
    Nanoscale; 2013 Sep; 5(17):8202-9. PubMed ID: 23831941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation and energy transfer in single conjugated polymers.
    Bolinger JC; Traub MC; Brazard J; Adachi T; Barbara PF; Vanden Bout DA
    Acc Chem Res; 2012 Nov; 45(11):1992-2001. PubMed ID: 22775295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational effect on energy transfer in single polythiophene chains.
    Adachi T; Lakhwani G; Traub MC; Ono RJ; Bielawski CW; Barbara PF; Vanden Bout DA
    J Phys Chem B; 2012 Aug; 116(32):9866-72. PubMed ID: 22780709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Singlet-singlet energy transfer in self-assembled systems of the cationic poly{9,9-bis[6-N,N,N-trimethylammonium)hexyl]fluorene-co-1,4-phenylene} with oppositely charged porphyrins.
    Pinto SM; Burrows HD; Pereira MM; Fonseca SM; Dias FB; Mallavia R; Tapia MJ
    J Phys Chem B; 2009 Dec; 113(50):16093-100. PubMed ID: 19925000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long distance energy transfer in a polymer matrix doped with a perylene dye.
    Fennel F; Lochbrunner S
    Phys Chem Chem Phys; 2011 Feb; 13(8):3527-33. PubMed ID: 21212888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplified energy transfer in conjugated polymer nanoparticle tags and sensors.
    Tian Z; Yu J; Wu C; Szymanski C; McNeill J
    Nanoscale; 2010 Oct; 2(10):1999-2011. PubMed ID: 20697652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient excitation-energy transfer in ion-based organic nanoparticles with versatile tunability of the fluorescence colours.
    Yao H; Ashiba K
    Chemphyschem; 2012 Aug; 13(11):2703-10. PubMed ID: 22674683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex Förster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly.
    Stewart MH; Huston AL; Scott AM; Efros AL; Melinger JS; Gemmill KB; Trammell SA; Blanco-Canosa JB; Dawson PE; Medintz IL
    ACS Nano; 2012 Jun; 6(6):5330-47. PubMed ID: 22671940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switching off FRET in the hybrid assemblies of diblock copolymer micelles, quantum dots, and dyes by plasmonic nanoparticles.
    Kim KS; Kim JH; Kim H; Laquai F; Arifin E; Lee JK; Yoo SI; Sohn BH
    ACS Nano; 2012 Jun; 6(6):5051-9. PubMed ID: 22621410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upconversion fluorescence resonance energy transfer biosensor with aromatic polymer nanospheres as the lable-free energy acceptor.
    Wang Y; Wu Z; Liu Z
    Anal Chem; 2013 Jan; 85(1):258-64. PubMed ID: 23186324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.