These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23817972)

  • 1. Human dental mesenchymal stem cells and neural regeneration.
    Xiao L; Tsutsui T
    Hum Cell; 2013 Sep; 26(3):91-6. PubMed ID: 23817972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury.
    Neirinckx V; Agirman G; Coste C; Marquet A; Dion V; Rogister B; Franzen R; Wislet S
    Stem Cell Res Ther; 2015 Nov; 6():211. PubMed ID: 26530515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances of tooth-derived stem cells in neural diseases treatments and nerve tissue regeneration.
    Wang D; Wang Y; Tian W; Pan J
    Cell Prolif; 2019 May; 52(3):e12572. PubMed ID: 30714230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration?
    Teixeira FG; Carvalho MM; Sousa N; Salgado AJ
    Cell Mol Life Sci; 2013 Oct; 70(20):3871-82. PubMed ID: 23456256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy.
    Cofano F; Boido M; Monticelli M; Zenga F; Ducati A; Vercelli A; Garbossa D
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31159345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regenerative effect of neural-induced human mesenchymal stromal cells in rat models of Parkinson's disease.
    Levy YS; Bahat-Stroomza M; Barzilay R; Burshtein A; Bulvik S; Barhum Y; Panet H; Melamed E; Offen D
    Cytotherapy; 2008; 10(4):340-52. PubMed ID: 18574767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tanshinone IIA promotes the differentiation of bone marrow mesenchymal stem cells into neuronal-like cells in a spinal cord injury model.
    Zhang XM; Ma J; Sun Y; Yu BQ; Jiao ZM; Wang D; Yu MY; Li JY; Fu J
    J Transl Med; 2018 Jul; 16(1):193. PubMed ID: 30001730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dental mesenchymal stem cells and neuro-regeneration: a focus on spinal cord injury.
    Bonaventura G; Incontro S; Iemmolo R; La Cognata V; Barbagallo I; Costanzo E; Barcellona ML; Pellitteri R; Cavallaro S
    Cell Tissue Res; 2020 Mar; 379(3):421-428. PubMed ID: 31776822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model.
    Ladak A; Olson J; Tredget EE; Gordon T
    Exp Neurol; 2011 Apr; 228(2):242-52. PubMed ID: 21281630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The superiority of conditioned medium derived from rapidly expanded mesenchymal stem cells for neural repair.
    Chen YT; Tsai MJ; Hsieh N; Lo MJ; Lee MJ; Cheng H; Huang WC
    Stem Cell Res Ther; 2019 Dec; 10(1):390. PubMed ID: 31842998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glial origin of mesenchymal stem cells in a tooth model system.
    Kaukua N; Shahidi MK; Konstantinidou C; Dyachuk V; Kaucka M; Furlan A; An Z; Wang L; Hultman I; Ahrlund-Richter L; Blom H; Brismar H; Lopes NA; Pachnis V; Suter U; Clevers H; Thesleff I; Sharpe P; Ernfors P; Fried K; Adameyko I
    Nature; 2014 Sep; 513(7519):551-4. PubMed ID: 25079316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion.
    Konig N; Trolle C; Kapuralin K; Adameyko I; Mitrecic D; Aldskogius H; Shortland PJ; Kozlova EN
    J Tissue Eng Regen Med; 2017 Jan; 11(1):129-137. PubMed ID: 24753366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents.
    Khoo ML; Tao H; Meedeniya AC; Mackay-Sim A; Ma DD
    PLoS One; 2011; 6(5):e19025. PubMed ID: 21625433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury.
    Yan Q; Ruan JW; Ding Y; Li WJ; Li Y; Zeng YS
    Exp Toxicol Pathol; 2011 Jan; 63(1-2):151-6. PubMed ID: 20005688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural Regenerative Potential of Stem Cells Derived from the Tooth Apical Papilla.
    Dagnino APA; Chagastelles PC; Medeiros RP; Estrázulas M; Kist LW; Bogo MR; Weber JBB; Campos MM; Silva JB
    Stem Cells Dev; 2020 Dec; 29(23):1479-1496. PubMed ID: 32988295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats.
    Ding Y; Yan Q; Ruan JW; Zhang YQ; Li WJ; Zhang YJ; Li Y; Dong H; Zeng YS
    BMC Neurosci; 2009 Apr; 10():35. PubMed ID: 19374777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidifferentiation potential of dental-derived stem cells.
    Yin JY; Luo XH; Feng WQ; Miao SH; Ning TT; Lei Q; Jiang T; Ma DD
    World J Stem Cells; 2021 May; 13(5):342-365. PubMed ID: 34136070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Regeneration of central nervous system: its concept and strategy].
    Okano H; Yoshizaki T; Okada S
    Rinsho Shinkeigaku; 2003 Nov; 43(11):824-6. PubMed ID: 15152475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of human adipose-derived stem cells into neuron/motoneuron-like cells for cell replacement therapy of spinal cord injury.
    Gao S; Guo X; Zhao S; Jin Y; Zhou F; Yuan P; Cao L; Wang J; Qiu Y; Sun C; Kang Z; Gao F; Xu W; Hu X; Yang D; Qin Y; Ning K; Shaw PJ; Zhong G; Cheng L; Zhu H; Gao Z; Chen X; Xu J
    Cell Death Dis; 2019 Aug; 10(8):597. PubMed ID: 31395857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cografted Wharton's jelly cells-derived neurospheres and BDNF promote functional recovery after rat spinal cord transection.
    Zhang L; Zhang HT; Hong SQ; Ma X; Jiang XD; Xu RX
    Neurochem Res; 2009 Nov; 34(11):2030-9. PubMed ID: 19462232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.