BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23818061)

  • 1. Chromium phytotoxicity in radish (Raphanus sativus): effects on metabolism and nutrient uptake.
    Tiwari KK; Singh NK; Rai UN
    Bull Environ Contam Toxicol; 2013 Sep; 91(3):339-44. PubMed ID: 23818061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of plasma-based spectroscopy and infrared microspectroscopy techniques to determine the uptake and effects of chromium(III) and chromium(VI) on Parkinsonia aculeata.
    Zhao Y; Peralta-Videa JR; Lopez-Moreno ML; Saupe GB; Gardea-Torresdey JL
    Int J Phytoremediation; 2011; 13 Suppl 1():17-33. PubMed ID: 22046749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excess lead alters growth, metabolism and translocation of certain nutrients in radish.
    Gopal R; Rizvi AH
    Chemosphere; 2008 Feb; 70(9):1539-44. PubMed ID: 17923149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amendment in phosphorus levels moderate the chromium toxicity in Raphanus sativus L. as assayed by antioxidant enzymes activities.
    Sayantan D; Shardendu
    Ecotoxicol Environ Saf; 2013 Sep; 95():161-70. PubMed ID: 23810367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI.
    Wang Y; Fang Z; Kang Y; Tsang EP
    J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings.
    Choudhary SP; Kanwar M; Bhardwaj R; Gupta BD; Gupta RK
    Chemosphere; 2011 Jul; 84(5):592-600. PubMed ID: 21561640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of synchrotron- and plasma-based spectroscopic techniques to determine the uptake and biotransformation of chromium(III) and chromium(VI) by Parkinsonia aculeata.
    Zhao Y; Parsons JG; Peralta-Videa JR; Lopez-Moreno ML; Gardea-Torresdey JL
    Metallomics; 2009; 1(4):330-8. PubMed ID: 21305130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic determination of the toxicity, absorption, reduction, and translocation of Cr(VI) in two Magnoliopsida species.
    Montes MO; Peralta-Videa JR; Parsons JG; Corral Diaz B; Gardea-Torresdey JL
    Int J Phytoremediation; 2013; 15(2):168-87. PubMed ID: 23487994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of copper and lead uptake and accumulation by two species of Elsholtzia.
    Peng HY; Yang XE
    Bull Environ Contam Toxicol; 2007 Feb; 78(2):152-7. PubMed ID: 17401511
    [No Abstract]   [Full Text] [Related]  

  • 10. Uptake, transport and transformation of arsenate in radishes (Raphanus sativus).
    Smith PG; Koch I; Reimer KJ
    Sci Total Environ; 2008 Feb; 390(1):188-97. PubMed ID: 17976691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The uptake of Cs and Sr from soil to radish (Raphanus sativus L.)- potential for phytoextraction and remediation of contaminated soils.
    Wang D; Wen F; Xu C; Tang Y; Luo X
    J Environ Radioact; 2012 Aug; 110():78-83. PubMed ID: 22402224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytotoxicity and bioaccumulation of copper and chromium using barley (Hordeum vulgare L.) in spiked artificial and natural forest soils.
    Ali NA; Ater M; Sunahara GI; Robidoux PY
    Ecotoxicol Environ Saf; 2004 Mar; 57(3):363-74. PubMed ID: 15041259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).
    Zhang W; Ebbs SD; Musante C; White JC; Gao C; Ma X
    J Agric Food Chem; 2015 Jan; 63(2):382-90. PubMed ID: 25531028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromium in tannery industry effluent and its effect on plant metabolism and growth.
    Nath K; Saini S; Sharma YK
    J Environ Biol; 2005 Apr; 26(2):197-204. PubMed ID: 16161973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L.
    Vernay P; Gauthier-Moussard C; Hitmi A
    Chemosphere; 2007 Jul; 68(8):1563-75. PubMed ID: 17434568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excess chromium alters uptake and translocation of certain nutrients in citrullus.
    Dube BK; Tewari K; Chatterjee J; Chatterjee C
    Chemosphere; 2003 Dec; 53(9):1147-53. PubMed ID: 14512119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz x alba L.) metabolism.
    Yu XZ; Gu JD
    Arch Environ Contam Toxicol; 2007 May; 52(4):503-11. PubMed ID: 17380236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of lead toxicity in Erica andevalensis as an alternative species for revegetation of contaminated soils.
    Mingorance MD; Leidi EO; Valdés B; Rossini Oliva S
    Int J Phytoremediation; 2012 Feb; 14(2):174-85. PubMed ID: 22567703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of fertilizers on the uptake of manganese in Cherry Belle radish plants: implications for human health.
    Clarke-Lambert S; Hilaire DS; Stock J; Salako O; Lebetkin M; Nasimov U; Strothers J; Blasczak-Boxe A; Skeete D; Blaszczak-Boxe C
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10414-10428. PubMed ID: 30811020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea).
    Choo TP; Lee CK; Low KS; Hishamuddin O
    Chemosphere; 2006 Feb; 62(6):961-7. PubMed ID: 16081131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.