BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23818178)

  • 1. Chromatin in a marine picoeukaryote is a disordered assemblage of nucleosomes.
    Gan L; Ladinsky MS; Jensen GJ
    Chromosoma; 2013 Oct; 122(5):377-86. PubMed ID: 23818178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell.
    Henderson GP; Gan L; Jensen GJ
    PLoS One; 2007 Aug; 2(8):e749. PubMed ID: 17710148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-ET reveals the macromolecular reorganization of
    Cai S; Chen C; Tan ZY; Huang Y; Shi J; Gan L
    Proc Natl Acad Sci U S A; 2018 Oct; 115(43):10977-10982. PubMed ID: 30297429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo.
    Chen C; Lim HH; Shi J; Tamura S; Maeshima K; Surana U; Gan L
    Mol Biol Cell; 2016 Nov; 27(21):3357-3368. PubMed ID: 27605704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation.
    Palenik B; Grimwood J; Aerts A; Rouzé P; Salamov A; Putnam N; Dupont C; Jorgensen R; Derelle E; Rombauts S; Zhou K; Otillar R; Merchant SS; Podell S; Gaasterland T; Napoli C; Gendler K; Manuell A; Tai V; Vallon O; Piganeau G; Jancek S; Heijde M; Jabbari K; Bowler C; Lohr M; Robbens S; Werner G; Dubchak I; Pazour GJ; Ren Q; Paulsen I; Delwiche C; Schmutz J; Rokhsar D; Van de Peer Y; Moreau H; Grigoriev IV
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7705-10. PubMed ID: 17460045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure.
    Daban JR
    Micron; 2011 Dec; 42(8):733-50. PubMed ID: 21703860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleosomes stacked with aligned dyad axes are found in native compact chromatin in vitro.
    Scheffer MP; Eltsov M; Bednar J; Frangakis AS
    J Struct Biol; 2012 May; 178(2):207-14. PubMed ID: 22138167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ.
    Eltsov M; Maclellan KM; Maeshima K; Frangakis AS; Dubochet J
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19732-7. PubMed ID: 19064912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features.
    Derelle E; Ferraz C; Rombauts S; Rouzé P; Worden AZ; Robbens S; Partensky F; Degroeve S; Echeynié S; Cooke R; Saeys Y; Wuyts J; Jabbari K; Bowler C; Panaud O; Piégu B; Ball SG; Ral JP; Bouget FY; Piganeau G; De Baets B; Picard A; Delseny M; Demaille J; Van de Peer Y; Moreau H
    Proc Natl Acad Sci U S A; 2006 Aug; 103(31):11647-52. PubMed ID: 16868079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible and dynamic nucleosome fiber in living mammalian cells.
    Nozaki T; Kaizu K; Pack CG; Tamura S; Tani T; Hihara S; Nagai T; Takahashi K; Maeshima K
    Nucleus; 2013; 4(5):349-56. PubMed ID: 23945462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles.
    Monnier A; Liverani S; Bouvet R; Jesson B; Smith JQ; Mosser J; Corellou F; Bouget FY
    BMC Genomics; 2010 Mar; 11():192. PubMed ID: 20307298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species.
    Hindle MM; Martin SF; Noordally ZB; van Ooijen G; Barrios-Llerena ME; Simpson TI; Le Bihan T; Millar AJ
    BMC Genomics; 2014 Aug; 15():640. PubMed ID: 25085202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure.
    Nishino Y; Eltsov M; Joti Y; Ito K; Takata H; Takahashi Y; Hihara S; Frangakis AS; Imamoto N; Ishikawa T; Maeshima K
    EMBO J; 2012 Apr; 31(7):1644-53. PubMed ID: 22343941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoscale organization of the chromatin fiber.
    Krietenstein N; Rando OJ
    Curr Opin Genet Dev; 2020 Apr; 61():32-36. PubMed ID: 32305817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei.
    Scheffer MP; Eltsov M; Frangakis AS
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16992-7. PubMed ID: 21969536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of nucleosome positioning in 3D chromatin organization and loop formation.
    Kharerin H; Bhat PJ; Padinhateeri R
    J Biosci; 2020; 45():. PubMed ID: 31965992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The loading of condensin in the context of chromatin.
    Robellet X; Vanoosthuyse V; Bernard P
    Curr Genet; 2017 Aug; 63(4):577-589. PubMed ID: 27909798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systems-level feedback regulation of cell cycle transitions in Ostreococcus tauri.
    Kapuy O; Vinod PK; Bánhegyi G; Novák B
    Plant Physiol Biochem; 2018 May; 126():39-46. PubMed ID: 29499434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Viral Immunity Chromosome in the Marine Picoeukaryote, Ostreococcus tauri.
    Yau S; Hemon C; Derelle E; Moreau H; Piganeau G; Grimsley N
    PLoS Pathog; 2016 Oct; 12(10):e1005965. PubMed ID: 27788272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simplified Transformation of
    Sanchez F; Geffroy S; Norest M; Yau S; Moreau H; Grimsley N
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31130696
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.