These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23818260)

  • 21. Modification of proteins by cyclopentenone prostaglandins is differentially modulated by GSH in vitro.
    Gayarre J; Avellano MI; Sánchez-Gómez FJ; Carrasco MJ; Cañada FJ; Pérez-Sala D
    Ann N Y Acad Sci; 2007 Jan; 1096():78-85. PubMed ID: 17405918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteome screens for Cys residues oxidation: the redoxome.
    Chiappetta G; Ndiaye S; Igbaria A; Kumar C; Vinh J; Toledano MB
    Methods Enzymol; 2010; 473():199-216. PubMed ID: 20513479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of GSTP1-1 oligomerization by electrophilic inflammatory mediators and reactive drugs.
    Sánchez-Gómez FJ; Dorado CG; Ayuso P; Agúndez JA; Pajares MA; Pérez-Sala D
    Inflamm Allergy Drug Targets; 2013 Jun; 12(3):162-71. PubMed ID: 23596995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 15-deoxy-Delta12,14-prostaglandin J2 as a potential endogenous regulator of redox-sensitive transcription factors.
    Kim EH; Surh YJ
    Biochem Pharmacol; 2006 Nov; 72(11):1516-28. PubMed ID: 16987499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia.
    Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A
    J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclopentenone prostaglandins with dienone structure promote cross-linking of the chemoresistance-inducing enzyme glutathione transferase P1-1.
    Sánchez-Gómez FJ; Díez-Dacal B; Pajares MA; Llorca O; Pérez-Sala D
    Mol Pharmacol; 2010 Oct; 78(4):723-33. PubMed ID: 20631055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ROSics: chemistry and proteomics of cysteine modifications in redox biology.
    Kim HJ; Ha S; Lee HY; Lee KJ
    Mass Spectrom Rev; 2015; 34(2):184-208. PubMed ID: 24916017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomic analysis of protein S-nitrosylation.
    Torta F; Usuelli V; Malgaroli A; Bachi A
    Proteomics; 2008 Nov; 8(21):4484-94. PubMed ID: 18846506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S; Boronat S; Hidalgo E
    Biochemistry; 2014 Apr; 53(16):2560-80. PubMed ID: 24738931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Interactions and Implications of Aldose Reductase Inhibition by PGA1 and Clinically Used Prostaglandins.
    Díez-Dacal B; Sánchez-Gómez FJ; Sánchez-Murcia PA; Milackova I; Zimmerman T; Ballekova J; García-Martín E; Agúndez JA; Gharbi S; Gago F; Stefek M; Pérez-Sala D
    Mol Pharmacol; 2016 Jan; 89(1):42-52. PubMed ID: 26487510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of novel protein targets for modification by 15-deoxy-Delta12,14-prostaglandin J2 in mesangial cells reveals multiple interactions with the cytoskeleton.
    Stamatakis K; Sánchez-Gómez FJ; Pérez-Sala D
    J Am Soc Nephrol; 2006 Jan; 17(1):89-98. PubMed ID: 16291835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reprint of: Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs.
    Satoh T; McKercher SR; Lipton SA
    Free Radic Biol Med; 2014 Jan; 66():45-57. PubMed ID: 24262357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox proteomics: identification and functional role of glutathionylated proteins.
    Fratelli M; Gianazza E; Ghezzi P
    Expert Rev Proteomics; 2004 Oct; 1(3):365-76. PubMed ID: 15966832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomic approaches to the characterization of protein thiol modification.
    Chouchani ET; James AM; Fearnley IM; Lilley KS; Murphy MP
    Curr Opin Chem Biol; 2011 Feb; 15(1):120-8. PubMed ID: 21130020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals.
    Surh YJ; Kundu JK; Na HK
    Planta Med; 2008 Oct; 74(13):1526-39. PubMed ID: 18937164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of Nrf2-dependent gene expression by 15-deoxy-Delta12,14-prostaglandin J2.
    Kansanen E; Kivelä AM; Levonen AL
    Free Radic Biol Med; 2009 Nov; 47(9):1310-7. PubMed ID: 19573595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thiol Redox Proteomics for Identifying Redox-Sensitive Cysteine Residues Within the Protein of Interest During Stress.
    Vogelsang L; Eirich J; Finkemeier I; Dietz KJ
    Methods Mol Biol; 2024; 2832():99-113. PubMed ID: 38869790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atherosclerosis: a redox-sensitive lipid imbalance suppressible by cyclopentenone prostaglandins.
    Gutierrez LL; Maslinkiewicz A; Curi R; de Bittencourt PI
    Biochem Pharmacol; 2008 Jun; 75(12):2245-62. PubMed ID: 18440492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomics methods to study methionine oxidation.
    Ghesquière B; Gevaert K
    Mass Spectrom Rev; 2014; 33(2):147-56. PubMed ID: 24178673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.