These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 23818330)
1. Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes. Pose-Méndez S; Candal E; Adrio F; Rodríguez-Moldes I J Comp Neurol; 2014 Jan; 522(1):131-68. PubMed ID: 23818330 [TBL] [Abstract][Full Text] [Related]
2. Cells of origin of pathways descending to the spinal cord in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. Smeets WJ; Timerick SJ J Comp Neurol; 1981 Nov; 202(4):473-91. PubMed ID: 7298910 [TBL] [Abstract][Full Text] [Related]
3. The afferent connections of the tectum mesencephali in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. Smeets WJ J Comp Neurol; 1982 Feb; 205(2):139-52. PubMed ID: 7076889 [TBL] [Abstract][Full Text] [Related]
4. Afferent connections of the cerebellum in various types of reptiles. Bangma GC; ten Donkelaar H J Comp Neurol; 1982 May; 207(3):255-73. PubMed ID: 7107986 [TBL] [Abstract][Full Text] [Related]
5. A Developmental Study of the Cerebellar Nucleus in the Catshark, a Basal Gnathostome. Pose-Méndez S; Rodríguez-Moldes I; Candal E; Mazan S; Anadón R Brain Behav Evol; 2017; 89(1):1-14. PubMed ID: 28214875 [TBL] [Abstract][Full Text] [Related]
6. The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis. Wullimann MF; Mueller T; Distel M; Babaryka A; Grothe B; Köster RW Front Neuroanat; 2011; 5():27. PubMed ID: 21559349 [TBL] [Abstract][Full Text] [Related]
7. Organization of the cerebellum in the pigeon (Columba livia): II. Projections of the cerebellar nuclei. Arends JJ; Zeigler HP J Comp Neurol; 1991 Apr; 306(2):245-72. PubMed ID: 1711054 [TBL] [Abstract][Full Text] [Related]
8. [Study of cerebellar connections in the turtle using the technic of axonal transport of horseradish peroxidase]. Belekhova MG; Gaidaenko GV Neirofiziologiia; 1985; 17(6):786-94. PubMed ID: 4088383 [TBL] [Abstract][Full Text] [Related]
9. Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfish Scyliorhinus canicula. Carrera I; Molist P; Anadón R; Rodríguez-Moldes I J Comp Neurol; 2008 Dec; 511(6):804-31. PubMed ID: 18925650 [TBL] [Abstract][Full Text] [Related]
13. [Embryonal development of the brain of the shark Scyliorhinus canicula (L.). I. Formation of the shape of the brain, the migration mode and phase and the structure of the diencephalon]. Farner HP J Hirnforsch; 1978; 19(4):313-32. PubMed ID: 739140 [TBL] [Abstract][Full Text] [Related]
14. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain. Ten Donkelaar HJ; De Boer-Van Huizen R J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959 [TBL] [Abstract][Full Text] [Related]
15. Visual and electrosensory circuits of the diencephalon in mormyrids: an evolutionary perspective. Wullimann MF; Northcutt RG J Comp Neurol; 1990 Jul; 297(4):537-52. PubMed ID: 2384612 [TBL] [Abstract][Full Text] [Related]
16. Trigeminal primary afferent projections to "non-trigeminal" areas of the rat central nervous system. Marfurt CF; Rajchert DM J Comp Neurol; 1991 Jan; 303(3):489-511. PubMed ID: 1706735 [TBL] [Abstract][Full Text] [Related]
17. Development of tyrosine hydroxylase-immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: new perspectives on the evolution of the vertebrate catecholaminergic system. Carrera I; Anadón R; Rodríguez-Moldes I J Comp Neurol; 2012 Nov; 520(16):3574-603. PubMed ID: 22473828 [TBL] [Abstract][Full Text] [Related]
18. Afferent and efferent connections of the cerebellum of the chondrostean Acipenser baeri: a carbocyanine dye (DiI) tracing study. Huesa G; Anadón R; Yáñez J J Comp Neurol; 2003 Jun; 460(3):327-44. PubMed ID: 12692853 [TBL] [Abstract][Full Text] [Related]
19. Pattern and polarity in the development and evolution of the gnathostome jaw: both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula. Compagnucci C; Debiais-Thibaud M; Coolen M; Fish J; Griffin JN; Bertocchini F; Minoux M; Rijli FM; Borday-Birraux V; Casane D; Mazan S; Depew MJ Dev Biol; 2013 May; 377(2):428-48. PubMed ID: 23473983 [TBL] [Abstract][Full Text] [Related]
20. Comparative topography of projections from the mesodiencephalic junction to the inferior olive, vestibular nuclei, and upper cervical cord in the cat. Spence SJ; Saint-Cyr JA J Comp Neurol; 1988 Feb; 268(3):357-74. PubMed ID: 3360994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]