These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23818601)

  • 61. Properties of zeaxanthin and its radical cation bound to the minor light-harvesting complexes CP24, CP26 and CP29.
    Amarie S; Wilk L; Barros T; Kühlbrandt W; Dreuw A; Wachtveitl J
    Biochim Biophys Acta; 2009 Jun; 1787(6):747-52. PubMed ID: 19248759
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Zeaxanthin independence of photophysics in light-harvesting complex II in a membrane environment.
    Son M; Pinnola A; Schlau-Cohen GS
    Biochim Biophys Acta Bioenerg; 2020 Jun; 1861(5-6):148115. PubMed ID: 32204904
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A land plant-specific thylakoid membrane protein contributes to photosystem II maintenance in Arabidopsis thaliana.
    Liu J; Last RL
    Plant J; 2015 Jun; 82(5):731-43. PubMed ID: 25846821
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pigment binding, fluorescence properties, and oligomerization behavior of Lhca5, a novel light-harvesting protein.
    Storf S; Jansson S; Schmid VH
    J Biol Chem; 2005 Feb; 280(7):5163-8. PubMed ID: 15563470
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum.
    Giovagnetti V; Ruban AV
    Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Role of Thylakoid Protein Phosphorylation in Energy-Dependent Quenching of Chlorophyll Fluorescence in Rice Plants.
    Pashayeva A; Wu G; Huseynova I; Lee CH; Zulfugarov IS
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360743
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A siphonous morphology affects light-harvesting modulation in the intertidal green macroalga Bryopsis corticulans (Ulvophyceae).
    Giovagnetti V; Han G; Ware MA; Ungerer P; Qin X; Wang WD; Kuang T; Shen JR; Ruban AV
    Planta; 2018 Jun; 247(6):1293-1306. PubMed ID: 29460179
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Plants cope with fluctuating light by frequency-dependent nonphotochemical quenching and cyclic electron transport.
    Niu Y; Lazár D; Holzwarth AR; Kramer DM; Matsubara S; Fiorani F; Poorter H; Schrey SD; Nedbal L
    New Phytol; 2023 Sep; 239(5):1869-1886. PubMed ID: 37429324
    [TBL] [Abstract][Full Text] [Related]  

  • 69. NPQ
    Tietz S; Hall CC; Cruz JA; Kramer DM
    Plant Cell Environ; 2017 Aug; 40(8):1243-1255. PubMed ID: 28699261
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Photosystem II supercomplex remodeling serves as an entry mechanism for state transitions in Arabidopsis.
    Dietzel L; Bräutigam K; Steiner S; Schüffler K; Lepetit B; Grimm B; Schöttler MA; Pfannschmidt T
    Plant Cell; 2011 Aug; 23(8):2964-77. PubMed ID: 21880991
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Disentangling the sites of non-photochemical quenching in vascular plants.
    Nicol L; Nawrocki WJ; Croce R
    Nat Plants; 2019 Nov; 5(11):1177-1183. PubMed ID: 31659240
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functional analysis of light-harvesting-like protein 3 (LIL3) and its light-harvesting chlorophyll-binding motif in Arabidopsis.
    Takahashi K; Takabayashi A; Tanaka A; Tanaka R
    J Biol Chem; 2014 Jan; 289(2):987-99. PubMed ID: 24275650
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex.
    Finazzi G; Johnson GN; Dall'Osto L; Joliot P; Wollman FA; Bassi R
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12375-80. PubMed ID: 15304641
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Quantifying the efficiency of photoprotection.
    Ruban AV
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1730):. PubMed ID: 28808106
    [TBL] [Abstract][Full Text] [Related]  

  • 75. M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter NPQ under low-light conditions in Arabidopsis.
    Da Q; Sun T; Wang M; Jin H; Li M; Feng D; Wang J; Wang HB; Liu B
    Plant Cell Rep; 2018 Feb; 37(2):279-291. PubMed ID: 29080907
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nucleus-encoded light-harvesting chlorophyll a/b proteins are imported normally into chlorophyll b-free chloroplasts of Arabidopsis.
    Nick S; Meurer J; Soll J; Ankele E
    Mol Plant; 2013 May; 6(3):860-71. PubMed ID: 23041941
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Molecular crosstalk between PAMP-triggered immunity and photosynthesis.
    Göhre V; Jones AM; Sklenář J; Robatzek S; Weber AP
    Mol Plant Microbe Interact; 2012 Aug; 25(8):1083-92. PubMed ID: 22550958
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A pigment-binding protein essential for regulation of photosynthetic light harvesting.
    Li XP; Björkman O; Shih C; Grossman AR; Rosenquist M; Jansson S; Niyogi KK
    Nature; 2000 Jan; 403(6768):391-5. PubMed ID: 10667783
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection.
    de Bianchi S; Betterle N; Kouril R; Cazzaniga S; Boekema E; Bassi R; Dall'Osto L
    Plant Cell; 2011 Jul; 23(7):2659-79. PubMed ID: 21803939
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Expression and functional analysis of two PsbS genes in bamboo (Phyllostachys edulis).
    Lou Y; Sun H; Wang S; Xu H; Li L; Zhao H; Gao Z
    Physiol Plant; 2018 Aug; 163(4):459-471. PubMed ID: 29314045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.