These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 23818989)

  • 1. Ubiquitination and degradation of CFTR by the E3 ubiquitin ligase MARCH2 through its association with adaptor proteins CAL and STX6.
    Cheng J; Guggino W
    PLoS One; 2013; 8(6):e68001. PubMed ID: 23818989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Syntaxin 6 and CAL mediate the degradation of the cystic fibrosis transmembrane conductance regulator.
    Cheng J; Cebotaru V; Cebotaru L; Guggino WB
    Mol Biol Cell; 2010 Apr; 21(7):1178-87. PubMed ID: 20130090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MARCH2 regulates autophagy by promoting CFTR ubiquitination and degradation and PIK3CA-AKT-MTOR signaling.
    Xia D; Qu L; Li G; Hongdu B; Xu C; Lin X; Lou Y; He Q; Ma D; Chen Y
    Autophagy; 2016 Sep; 12(9):1614-30. PubMed ID: 27308891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of mature cystic fibrosis transmembrane regulator protein by the PDZ domain protein CAL.
    Cheng J; Wang H; Guggino WB
    J Biol Chem; 2004 Jan; 279(3):1892-8. PubMed ID: 14570915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression.
    Cheng J; Moyer BD; Milewski M; Loffing J; Ikeda M; Mickle JE; Cutting GR; Li M; Stanton BA; Guggino WB
    J Biol Chem; 2002 Feb; 277(5):3520-9. PubMed ID: 11707463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The E3 ubiquitin ligase MARCH2 regulates ERGIC3-dependent trafficking of secretory proteins.
    Yoo W; Cho EB; Kim S; Yoon JB
    J Biol Chem; 2019 Jul; 294(28):10900-10912. PubMed ID: 31142615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relative binding affinities of PDZ partners for CFTR: a biochemical basis for efficient endocytic recycling.
    Cushing PR; Fellows A; Villone D; Boisguérin P; Madden DR
    Biochemistry; 2008 Sep; 47(38):10084-98. PubMed ID: 18754678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting CAL as a negative regulator of DeltaF508-CFTR cell-surface expression: an RNA interference and structure-based mutagenetic approach.
    Wolde M; Fellows A; Cheng J; Kivenson A; Coutermarsh B; Talebian L; Karlson K; Piserchio A; Mierke DF; Stanton BA; Guggino WB; Madden DR
    J Biol Chem; 2007 Mar; 282(11):8099-109. PubMed ID: 17158866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CFTR-Associated Ligand Arrests the Trafficking of the Mutant ΔF508 CFTR Channel in the ER Contributing to Cystic Fibrosis.
    Bergbower E; Boinot C; Sabirzhanova I; Guggino W; Cebotaru L
    Cell Physiol Biochem; 2018; 45(2):639-655. PubMed ID: 29402832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of cystic fibrosis transmembrane regulator trafficking and protein expression by a Rho family small GTPase TC10.
    Cheng J; Wang H; Guggino WB
    J Biol Chem; 2005 Feb; 280(5):3731-9. PubMed ID: 15546864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction with cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) inhibits beta1-adrenergic receptor surface expression.
    He J; Bellini M; Xu J; Castleberry AM; Hall RA
    J Biol Chem; 2004 Nov; 279(48):50190-6. PubMed ID: 15358775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SYVN1, NEDD8, and FBXO2 Proteins Regulate ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Ubiquitin-mediated Proteasomal Degradation.
    Ramachandran S; Osterhaus SR; Parekh KR; Jacobi AM; Behlke MA; McCray PB
    J Biol Chem; 2016 Dec; 291(49):25489-25504. PubMed ID: 27756846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DLG1 is an anchor for the E3 ligase MARCH2 at sites of cell-cell contact.
    Cao Z; Huett A; Kuballa P; Giallourakis C; Xavier RJ
    Cell Signal; 2008 Jan; 20(1):73-82. PubMed ID: 17980554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. c-Cbl facilitates endocytosis and lysosomal degradation of cystic fibrosis transmembrane conductance regulator in human airway epithelial cells.
    Ye S; Cihil K; Stolz DB; Pilewski JM; Stanton BA; Swiatecka-Urban A
    J Biol Chem; 2010 Aug; 285(35):27008-27018. PubMed ID: 20525683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaperone-Independent Peripheral Quality Control of CFTR by RFFL E3 Ligase.
    Okiyoneda T; Veit G; Sakai R; Aki M; Fujihara T; Higashi M; Susuki-Miyata S; Miyata M; Fukuda N; Yoshida A; Xu H; Apaja PM; Lukacs GL
    Dev Cell; 2018 Mar; 44(6):694-708.e7. PubMed ID: 29503157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CFTR trafficking mutation F508del inhibits the constitutive activity of SLC26A9.
    Bertrand CA; Mitra S; Mishra SK; Wang X; Zhao Y; Pilewski JM; Madden DR; Frizzell RA
    Am J Physiol Lung Cell Mol Physiol; 2017 Jun; 312(6):L912-L925. PubMed ID: 28360110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin-like growth factor 1 (IGF-1) enhances the protein expression of CFTR.
    Lee HW; Cheng J; Kovbasnjuk O; Donowitz M; Guggino WB
    PLoS One; 2013; 8(3):e59992. PubMed ID: 23555857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syntaxin 8 and the Endoplasmic Reticulum Processing of ΔF508-CFTR.
    Sabirzhanova I; Boinot C; Guggino WB; Cebotaru L
    Cell Physiol Biochem; 2018; 51(3):1489-1499. PubMed ID: 30485852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ΔF508 CFTR surface stability is regulated by DAB2 and CHIP-mediated ubiquitination in post-endocytic compartments.
    Fu L; Rab A; Tang Lp; Bebok Z; Rowe SM; Bartoszewski R; Collawn JF
    PLoS One; 2015; 10(4):e0123131. PubMed ID: 25879443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNF185 is a novel E3 ligase of endoplasmic reticulum-associated degradation (ERAD) that targets cystic fibrosis transmembrane conductance regulator (CFTR).
    El Khouri E; Le Pavec G; Toledano MB; Delaunay-Moisan A
    J Biol Chem; 2013 Oct; 288(43):31177-91. PubMed ID: 24019521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.