BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23819021)

  • 1. Scaling Laws at the Nano Size: The Effect of Particle Size and Shape on the Magnetism and Relaxivity of Iron Oxide Nanoparticle Contrast Agents.
    Smolensky ED; Park HY; Zhou Y; Rolla GA; Marjańska M; Botta M; Pierre VC
    J Mater Chem B; 2013 Jun; 1(22):2818-2828. PubMed ID: 23819021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron oxide nanoparticles as positive T
    Oberdick SD; Jordanova KV; Lundstrom JT; Parigi G; Poorman ME; Zabow G; Keenan KE
    Sci Rep; 2023 Jul; 13(1):11520. PubMed ID: 37460669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging.
    Mishra SK; Kumar BS; Khushu S; Tripathi RP; Gangenahalli G
    Contrast Media Mol Imaging; 2016 Sep; 11(5):350-361. PubMed ID: 27230705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis.
    Saraswathy A; Nazeer SS; Jeevan M; Nimi N; Arumugam S; Harikrishnan VS; Varma PR; Jayasree RS
    Colloids Surf B Biointerfaces; 2014 May; 117():216-24. PubMed ID: 24646453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional Theranostic Nanoparticles Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for T
    Shen Z; Chen T; Ma X; Ren W; Zhou Z; Zhu G; Zhang A; Liu Y; Song J; Li Z; Ruan H; Fan W; Lin L; Munasinghe J; Chen X; Wu A
    ACS Nano; 2017 Nov; 11(11):10992-11004. PubMed ID: 29039917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruptive chemical doping in a ferritin-based iron oxide nanoparticle to decrease r2 and enhance detection with T1-weighted MRI.
    Clavijo Jordan MV; Beeman SC; Baldelomar EJ; Bennett KM
    Contrast Media Mol Imaging; 2014; 9(5):323-32. PubMed ID: 24764110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Neodymium Doping on MRI Relaxivity of Gadolinium Oxide Nanoparticles.
    B D; N G; M T
    J Biomed Phys Eng; 2020 Oct; 10(5):589-596. PubMed ID: 33134218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI.
    Hannecart A; Stanicki D; Vander Elst L; Muller RN; Lecommandoux S; Thévenot J; Bonduelle C; Trotier A; Massot P; Miraux S; Sandre O; Laurent S
    Nanoscale; 2015 Feb; 7(8):3754-67. PubMed ID: 25644780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI.
    Hajesmaeelzadeh F; Shanehsazzadeh S; Grüttner C; Daha FJ; Oghabian MA
    Iran J Basic Med Sci; 2016 Feb; 19(2):166-71. PubMed ID: 27081461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxivity properties of magnetoferritin: The iron loading effect.
    Aslan TN
    J Biosci Bioeng; 2022 May; 133(5):474-480. PubMed ID: 35277341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Casein-Coated Fe5C2 Nanoparticles with Superior r2 Relaxivity for Liver-Specific Magnetic Resonance Imaging.
    Cowger TA; Tang W; Zhen Z; Hu K; Rink DE; Todd TJ; Wang GD; Zhang W; Chen H; Xie J
    Theranostics; 2015; 5(11):1225-32. PubMed ID: 26379788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity.
    LaConte LE; Nitin N; Zurkiya O; Caruntu D; O'Connor CJ; Hu X; Bao G
    J Magn Reson Imaging; 2007 Dec; 26(6):1634-41. PubMed ID: 17968941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance
    Zhao D; Peng S; Xiao H; Li Q; Chai Y; Sun H; Liu R; Yao L; Ma L
    ACS Appl Bio Mater; 2023 Jun; 6(6):2137-2144. PubMed ID: 37229527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold-coated iron oxide nanoparticles as a T2 contrast agent in magnetic resonance imaging.
    Ahmad T; Bae H; Rhee I; Chang Y; Jin SU; Hong S
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5132-7. PubMed ID: 22966533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron Oxide Nanoparticle Based Contrast Agents for Magnetic Resonance Imaging.
    Shen Z; Wu A; Chen X
    Mol Pharm; 2017 May; 14(5):1352-1364. PubMed ID: 27776215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation and characterization of citric acid-modified superparamagnetic iron oxide nanoparticles].
    Wang H; Qin XY; Li ZY; Zheng ZZ; Fan TY
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):340-346. PubMed ID: 29643537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating size-dependent relaxivity of PEGylated-USPIOs to develop gadolinium-free T1 contrast agents for vascular imaging.
    Khandhar AP; Wilson GJ; Kaul MG; Salamon J; Jung C; Krishnan KM
    J Biomed Mater Res A; 2018 Sep; 106(9):2440-2447. PubMed ID: 29664208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Roles of Morphology on the Relaxation Rates of Magnetic Nanoparticles.
    Yang L; Wang Z; Ma L; Li A; Xin J; Wei R; Lin H; Wang R; Chen Z; Gao J
    ACS Nano; 2018 May; 12(5):4605-4614. PubMed ID: 29672022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of the 1H NMR relaxation enhancement produced by iron oxide and core-shell iron-iron oxide nanoparticles.
    Miguel OB; Gossuin Y; Morales MP; Gillis P; Muller RN; Veintemillas-Verdaguer S
    Magn Reson Imaging; 2007 Dec; 25(10):1437-41. PubMed ID: 17566686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles.
    Roohi F; Lohrke J; Ide A; Schütz G; Dassler K
    Int J Nanomedicine; 2012; 7():4447-58. PubMed ID: 22927759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.