BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23819265)

  • 1. Micropropagation of Myriophyllum alterniflorum (Haloragaceae) for stream rehabilitation: first in vitro culture and reintroduction assays of a heavy-metal hyperaccumulator immersed macrophyte.
    Delmail D; Labrousse P; Hourdin P; Larcher L; Moesch C; Botineau M
    Int J Phytoremediation; 2013; 15(7):647-62. PubMed ID: 23819265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myriophyllum alterniflorum DC., biomonitor of metal pollution and water quality. Sorption/accumulation capacities and photosynthetic pigments composition changes after copper and cadmium exposure.
    Ngayila N; Basly JP; Lejeune AH; Botineau M; Baudu M
    Sci Total Environ; 2007 Feb; 373(2-3):564-71. PubMed ID: 17217998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of arsenate As (V) on the biomarkers of Myriophyllum alterniflorum in oligotrophic and eutrophic conditions.
    Krayem M; Deluchat V; Rabiet M; Cleries K; Lenain JF; Saad Z; Kazpard V; Labrousse P
    Chemosphere; 2016 Mar; 147():131-7. PubMed ID: 26766024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorption and translocation of copper and arsenic in an aquatic macrophyte Myriophyllum alterniflorum DC. in oligotrophic and eutrophic conditions.
    Krayem M; Baydoun M; Deluchat V; Lenain JF; Kazpard V; Labrousse P
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):11129-11136. PubMed ID: 26916264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative in vitro/in situ approaches to three biomarker responses of Myriophyllum alterniflorum exposed to metal stress.
    Decou R; Bigot S; Hourdin P; Delmail D; Labrousse P
    Chemosphere; 2019 May; 222():29-37. PubMed ID: 30685657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined effect of copper and hydrodynamic conditions on Myriophyllum alterniflorum biomarkers.
    Krayem M; Deluchat V; Hourdin P; Fondanèche P; Lecavelier Des Etangs F; Kazpard V; Moesch C; Labrousse P
    Chemosphere; 2018 May; 199():427-434. PubMed ID: 29453069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle.
    Xue PY; Li GX; Liu WJ; Yan CZ
    Chemosphere; 2010 Nov; 81(9):1098-103. PubMed ID: 20934737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micropropagation of African violet (Saintpaulia ionantha Wendl.).
    Shukla M; Sullivan JA; Jain SM; Murch SJ; Saxena PK
    Methods Mol Biol; 2013; 11013():279-89. PubMed ID: 23179707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing growth development of Myriophyllum spp. in laboratory and field experiments for ecotoxicological testing.
    Knauer K; Mohr S; Feiler U
    Environ Sci Pollut Res Int; 2008 Jun; 15(4):322-31. PubMed ID: 18491155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced phytoremediation of cadmium polluted water through two aquatic plants Veronica anagallis-aquatica and Epilobium laxum.
    Ahmad A; Hadi F; Ali N; Jan AU
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):17715-29. PubMed ID: 27246561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are Myriophyllum alterniflorum biomarker responses to arsenic stress differentially affected by hydrodynamic conditions?
    Krayem M; Deluchat V; Hourdin P; Labrousse P
    Chemosphere; 2019 Jun; 225():497-506. PubMed ID: 30897473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L.
    Das S; Goswami S; Talukdar AD
    Bull Environ Contam Toxicol; 2014 Feb; 92(2):169-74. PubMed ID: 24220931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro propagation of jojoba.
    Llorente BE; Apóstolo NM
    Methods Mol Biol; 2013; 11013():19-31. PubMed ID: 23179687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Cadmium Scavenging Potential of Canna indica L.
    Solanki P; Narayan M; Rabha AK; Srivastava RK
    Bull Environ Contam Toxicol; 2018 Oct; 101(4):446-450. PubMed ID: 30116850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation.
    Costa MB; Tavares FV; Martinez CB; Colares IG; Martins CMG
    Ecotoxicol Environ Saf; 2018 Jul; 155():117-124. PubMed ID: 29510306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis I. The effectiveness of Cd, Cu, Pb, and Zn bioaccumulation and plant growth.
    Mleczek M; Kozlowska M; Kaczmarek Z; Chadzinikolau T; Golinski P
    Int J Phytoremediation; 2012 Jan; 14(1):75-88. PubMed ID: 22567696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.
    Basile A; Sorbo S; Conte B; Cobianchi RC; Trinchella F; Capasso C; Carginale V
    Int J Phytoremediation; 2012 Apr; 14(4):374-87. PubMed ID: 22567718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils.
    Senthilkumar P; Prince WS; Sivakumar S; Subbhuraam CV
    Chemosphere; 2005 Sep; 60(10):1493-6. PubMed ID: 16054919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the herbicide metazachlor on macrophytes and ecosystem function in freshwater pond and stream mesocosms.
    Mohr S; Berghahn R; Feibicke M; Meinecke S; Ottenströer T; Schmiedling I; Schmiediche R; Schmidt R
    Aquat Toxicol; 2007 May; 82(2):73-84. PubMed ID: 17353057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.