These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
570 related articles for article (PubMed ID: 23819269)
1. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium. Hechmi N; Ben Aissa N; Abdennaceur H; Jedidi N Int J Phytoremediation; 2013; 15(7):703-13. PubMed ID: 23819269 [TBL] [Abstract][Full Text] [Related]
2. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
3. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil. Hechmi N; Ben Aissa N; Abdenaceur H; Jedidi N Int J Phytoremediation; 2015; 17(1-6):109-16. PubMed ID: 25237721 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Hechmi N; Aissa NB; Abdenaceur H; Jedidi N Environ Sci Pollut Res Int; 2014 Jan; 21(2):1304-13. PubMed ID: 23900950 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Lin Q; Wang Z; Ma S; Chen Y Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of organic amendment on the effect of cadmium bioavailability in contaminated soils using the DGT technique and traditional methods. Yao Y; Sun Q; Wang C; Wang PF; Ding SM Environ Sci Pollut Res Int; 2017 Mar; 24(9):7959-7968. PubMed ID: 26282443 [TBL] [Abstract][Full Text] [Related]
7. Plant uptake and enhanced dissipation of di(2-ethylhexyl) phthalate (DEHP) in spiked soils by different plant species. Li YW; Cai QY; Mo CH; Zeng QY; Lü H; Li QS; Xu GS Int J Phytoremediation; 2014; 16(6):609-20. PubMed ID: 24912246 [TBL] [Abstract][Full Text] [Related]
8. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Liang Y; Wong JW; Wei L Chemosphere; 2005 Jan; 58(4):475-83. PubMed ID: 15620739 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of organic and inorganic amendments on maize growth and uptake of cd and zn from contaminated paddy soils. Putwattana N; Kruatrachue M; Kumsopa A; Pokethitiyook P Int J Phytoremediation; 2015; 17(1-6):165-74. PubMed ID: 25254923 [TBL] [Abstract][Full Text] [Related]
10. The Effect of Pollination on Cd Phytoextraction From Soil by Maize (Zea mays L.). Xu W; Lu G; Wang R; Guo C; Liao C; Yi X; Dang Z Int J Phytoremediation; 2015; 17(10):945-50. PubMed ID: 25581531 [TBL] [Abstract][Full Text] [Related]
11. Uptake of atrazine and cadmium from soil by maize (Zea mays L.) in association with the arbuscular mycorrhizal fungus Glomus etunicatum. Huang H; Zhang S; Chen BD; Wu N; Shan XQ; Christy P J Agric Food Chem; 2006 Dec; 54(25):9377-82. PubMed ID: 17147421 [TBL] [Abstract][Full Text] [Related]
12. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Chang Q; Diao FW; Wang QF; Pan L; Dang ZH; Guo W Environ Pollut; 2018 Oct; 241():607-615. PubMed ID: 29886381 [TBL] [Abstract][Full Text] [Related]
13. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals. Arbaoui S; Evlard A; Mhamdi Mel W; Campanella B; Paul R; Bettaieb T Biodegradation; 2013 Jul; 24(4):563-7. PubMed ID: 23436151 [TBL] [Abstract][Full Text] [Related]
14. Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants. Ruiz E; Rodríguez L; Alonso-Azcárate J Chemosphere; 2009 May; 75(8):1035-41. PubMed ID: 19232427 [TBL] [Abstract][Full Text] [Related]
15. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils. Broadhurst CL; Chaney RL; Davis AP; Cox A; Kumar K; Reeves RD; Green CE Int J Phytoremediation; 2015; 17(1-6):25-39. PubMed ID: 25174422 [TBL] [Abstract][Full Text] [Related]
16. Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea mays. Selvam A; Wong JW J Hazard Mater; 2009 Aug; 167(1-3):170-8. PubMed ID: 19185420 [TBL] [Abstract][Full Text] [Related]
17. Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of Cd to maize in artificially contaminated loess soil. Zhao B; Xu R; Ma F; Li Y; Wang L J Environ Manage; 2016 Dec; 184(Pt 3):569-574. PubMed ID: 27784579 [TBL] [Abstract][Full Text] [Related]
18. Effects of exogenous sulfur on maize (Zea mays L.) growth and Cd accumulation in Cd-contaminated plastic shed soil. Sun K; Yue Y; Wen D; Li X; Yang Y; Yang N; Zhang H; Chen N; Wang K Environ Monit Assess; 2020 Sep; 192(10):651. PubMed ID: 32964290 [TBL] [Abstract][Full Text] [Related]
19. Silicon influence on maize, Zea mays L., hybrids exposed to cadmium treatment. Lukacová Kuliková Z; Lux A Bull Environ Contam Toxicol; 2010 Sep; 85(3):243-50. PubMed ID: 20563865 [TBL] [Abstract][Full Text] [Related]
20. Phytoremediation efficiency of a pcp-contaminated soil using four plant species as mono- and mixed cultures. Hechmi N; Aissa NB; Abdenaceur H; Jedidi N Int J Phytoremediation; 2014; 16(7-12):1241-56. PubMed ID: 24933915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]