BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23819275)

  • 1. Nutrient sequestration, biomass production by microalgae and phytoremediation of sewage water.
    Renuka N; Sood A; Ratha SK; Prasanna R; Ahluwalia AS
    Int J Phytoremediation; 2013; 15(8):789-800. PubMed ID: 23819275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of sewage nutrients on algal production, biomass and pigments in tropical tidal creeks.
    Burford MA; Revill AT; Smith J; Clementson L
    Mar Pollut Bull; 2012 Dec; 64(12):2671-80. PubMed ID: 23122766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.
    Åkerström AM; Mortensen LM; Rusten B; Gislerød HR
    J Environ Manage; 2014 Nov; 144():118-24. PubMed ID: 24935023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgae cultured by sewage and organic constituents.
    Inoue K; Uchida T
    Chemosphere; 2013 Oct; 93(7):1442-5. PubMed ID: 24059978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater.
    Ji F; Liu Y; Hao R; Li G; Zhou Y; Dong R
    Bioresour Technol; 2014 Jun; 161():200-7. PubMed ID: 24704885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent.
    Gao F; Yang ZH; Li C; Zeng GM; Ma DH; Zhou L
    Bioresour Technol; 2015 Mar; 179():8-12. PubMed ID: 25514396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous nutrient removal, optimised CO2 mitigation and biofuel feedstock production by Chlorogonium sp. grown in secondary treated non-sterile saline sewage effluent.
    Lee KY; Ng TW; Li G; An T; Kwan KK; Chan KM; Huang G; Yip HY; Wong PK
    J Hazard Mater; 2015 Oct; 297():241-50. PubMed ID: 25967099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitating effects of plant hormones on biomass production and nutrients removal by Tetraselmis cordiformis for advanced sewage treatment and its mechanism.
    Zhao P; Lin Z; Wang Y; Chai H; Li Y; He L; Zhou J
    Sci Total Environ; 2019 Nov; 693():133650. PubMed ID: 31377356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri.
    Fernandes B; Teixeira J; Dragone G; Vicente AA; Kawano S; Bišová K; Přibyl P; Zachleder V; Vítová M
    Bioresour Technol; 2013 Sep; 144():268-74. PubMed ID: 23876655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of freshwater algal cell density to hydrochemical variables in an urban aquatic ecosystem, northern China.
    Yang J; Wang F; Lv J; Liu Q; Nan F; Xie S; Feng J
    Environ Monit Assess; 2018 Dec; 191(1):29. PubMed ID: 30591969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgal and cyanobacterial cultivation: the supply of nutrients.
    Markou G; Vandamme D; Muylaert K
    Water Res; 2014 Nov; 65():186-202. PubMed ID: 25113948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms.
    Boelee NC; Temmink H; Janssen M; Buisman CJ; Wijffels RH
    Water Res; 2011 Nov; 45(18):5925-33. PubMed ID: 21940029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical-algal-biofilm enhanced raceway pond for cost-effective wastewater treatment and value-added products production.
    Zhang Q; Yu Z; Zhu L; Ye T; Zuo J; Li X; Xiao B; Jin S
    Water Res; 2018 Aug; 139():144-157. PubMed ID: 29635151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled nutrient removal and biomass production with mixed algal culture: impact of biotic and abiotic factors.
    Su Y; Mennerich A; Urban B
    Bioresour Technol; 2012 Aug; 118():469-76. PubMed ID: 22717565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal strategies for bioremediation of nitrate-contaminated groundwater and microalgae biomass production.
    Rezvani F; Sarrafzadeh MH; Seo SH; Oh HM
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27471-27482. PubMed ID: 30043348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of drainage solution from hydroponic greenhouse production with microalgae.
    Hultberg M; Carlsson AS; Gustafsson S
    Bioresour Technol; 2013 May; 136():401-6. PubMed ID: 23567708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biologically mediated phosphorus precipitation in wastewater treatment with microalgae.
    Larsdotter K; La Cour Jansen J; Dalhammar G
    Environ Technol; 2007 Sep; 28(9):953-60. PubMed ID: 17910248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrient removal and lipid accumulation properties of newly isolated microalgal strains.
    Han L; Pei H; Hu W; Han F; Song M; Zhang S
    Bioresour Technol; 2014 Aug; 165():38-41. PubMed ID: 24731916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing new and conventional methods to estimate benthic algal biomass and composition in freshwaters.
    Kahlert M; McKie BG
    Environ Sci Process Impacts; 2014 Nov; 16(11):2627-34. PubMed ID: 25277172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica.
    von Alvensleben N; Stookey K; Magnusson M; Heimann K
    PLoS One; 2013; 8(5):e63569. PubMed ID: 23667639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.