These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23819285)

  • 1. Phytoremediation of 1,4-dioxane-containing recovered groundwater.
    Ferro AM; Kennedy J; LaRue JC
    Int J Phytoremediation; 2013; 15(10):911-23. PubMed ID: 23819285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field note: irrigation of tree stands with groundwater containing 1,4-dioxane.
    Ferro AM; Tammi CE
    Int J Phytoremediation; 2009 Jul; 11(5):425-40. PubMed ID: 19810346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of ethylene glycol on the phytovolatilization of 1,4-dioxane.
    Edwards MR; Hetu MF; Columbus M; Silva A; Lefebvre DD
    Int J Phytoremediation; 2011 Aug; 13(7):702-16. PubMed ID: 21972497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mass balance study of the phytoremediation of perchloroethylene-contaminated groundwater.
    James CA; Xin G; Doty SL; Muiznieks I; Newman L; Strand SE
    Environ Pollut; 2009; 157(8-9):2564-9. PubMed ID: 19345455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of deep-rooted phreatophytic trees at a site containing total petroleum hydrocarbons.
    Ferro AM; Adham T; Berra B; Tsao D
    Int J Phytoremediation; 2013; 15(3):232-44. PubMed ID: 23488009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of 1,4-dioxane originating from incineration residues produced by incineration of municipal solid waste.
    Fujiwara T; Tamada T; Kurata Y; Ono Y; Kose T; Ono Y; Nishimura F; Ohtoshi K
    Chemosphere; 2008 Mar; 71(5):894-901. PubMed ID: 18191439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatilization of trichloroethylene from trees and soil: measurement and scaling approaches.
    Doucette W; Klein H; Chard J; Dupont R; Plaehn W; Bugbee B
    Environ Sci Technol; 2013 Jun; 47(11):5813-20. PubMed ID: 23641774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1,4-Dioxane biodegradation at low temperatures in Arctic groundwater samples.
    Li M; Fiorenza S; Chatham JR; Mahendra S; Alvarez PJ
    Water Res; 2010 May; 44(9):2894-900. PubMed ID: 20199795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene.
    Hand S; Wang B; Chu KH
    Sci Total Environ; 2015 Jul; 520():154-9. PubMed ID: 25813968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the biodegradation potential of 1,4-dioxane in river, soil and activated sludge samples.
    Sei K; Kakinoki T; Inoue D; Soda S; Fujita M; Ike M
    Biodegradation; 2010 Jul; 21(4):585-91. PubMed ID: 20091334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the intrinsic bioremediation potential of 1,4-dioxane and trichloroethene using innovative environmental diagnostic tools.
    Chiang SY; Mora R; Diguiseppi WH; Davis G; Sublette K; Gedalanga P; Mahendra S
    J Environ Monit; 2012 Sep; 14(9):2317-26. PubMed ID: 22825917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane.
    Mahendra S; Grostern A; Alvarez-Cohen L
    Chemosphere; 2013 Mar; 91(1):88-92. PubMed ID: 23237300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation.
    De Biase C; Carminati A; Oswald SE; Thullner M
    J Contam Hydrol; 2013 Nov; 154():53-69. PubMed ID: 24090736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaugmenting the poplar rhizosphere to enhance treatment of 1,4-dioxane.
    Simmer R; Mathieu J; da Silva MLB; Lashmit P; Gopishetty S; Alvarez PJJ; Schnoor JL
    Sci Total Environ; 2020 Nov; 744():140823. PubMed ID: 32721670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-occurrence of 1,4-dioxane with trichloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: Fact or fiction.
    Anderson RH; Anderson JK; Bower PA
    Integr Environ Assess Manag; 2012 Oct; 8(4):731-7. PubMed ID: 22492728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the mechanisms for uptake and translocation of dioxane in a soil-plant ecosystem with STELLA.
    Ouyang Y
    J Contam Hydrol; 2008 Jan; 95(1-2):17-29. PubMed ID: 17870205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of novel oxygen-releasing alginate beads as an efficient oxygen carrier for the enhancement of aerobic bioremediation of 1,4-dioxane contaminated groundwater.
    Lee CS; Le Thanh T; Kim EJ; Gong J; Chang YY; Chang YS
    Bioresour Technol; 2014 Nov; 171():59-65. PubMed ID: 25189509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation.
    Weyens N; van der Lelie D; Artois T; Smeets K; Taghavi S; Newman L; Carleer R; Vangronsveld J
    Environ Sci Technol; 2009 Dec; 43(24):9413-8. PubMed ID: 20000537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: II. CONIFEROUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):171-186. PubMed ID: 28133996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the relative uptake of ground vs. surface water by Populus deltoides during phytoremediation.
    Clinton BD; Vose JM; Vroblesky DA; Harvey GJ
    Int J Phytoremediation; 2004; 6(3):239-52. PubMed ID: 15554476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.