These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
725 related articles for article (PubMed ID: 23819291)
1. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11. Huang GH; Tian HH; Liu HY; Fan XW; Liang Y; Li YZ Int J Phytoremediation; 2013; 15(10):991-1009. PubMed ID: 23819291 [TBL] [Abstract][Full Text] [Related]
2. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. Wang W; Deng Z; Tan H; Cao L Int J Phytoremediation; 2013; 15(5):488-97. PubMed ID: 23488174 [TBL] [Abstract][Full Text] [Related]
3. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Jing YX; Yan JL; He HD; Yang DJ; Xiao L; Zhong T; Yuan M; Cai XD; Li SB Int J Phytoremediation; 2014; 16(4):321-33. PubMed ID: 24912234 [TBL] [Abstract][Full Text] [Related]
4. Copper-resistant bacteria enhance plant growth and copper phytoextraction. Yang R; Luo C; Chen Y; Wang G; Xu Y; Shen Z Int J Phytoremediation; 2013; 15(6):573-84. PubMed ID: 23819298 [TBL] [Abstract][Full Text] [Related]
5. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization. Li Y; Wang Q; Wang L; He LY; Sheng XF Ecotoxicol Environ Saf; 2016 Feb; 124():163-168. PubMed ID: 26517728 [TBL] [Abstract][Full Text] [Related]
6. Characterization of plant growth-promoting Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil. Sheng XF; Jiang CY; He LY Can J Microbiol; 2008 May; 54(5):417-22. PubMed ID: 18449227 [TBL] [Abstract][Full Text] [Related]
7. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings. Zhang WH; Huang Z; He LY; Sheng XF Chemosphere; 2012 Jun; 87(10):1171-8. PubMed ID: 22397839 [TBL] [Abstract][Full Text] [Related]
8. Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Kumar KV; Singh N; Behl HM; Srivastava S Chemosphere; 2008 Jun; 72(4):678-83. PubMed ID: 18440582 [TBL] [Abstract][Full Text] [Related]
9. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932 [TBL] [Abstract][Full Text] [Related]
10. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Zhang YF; He LY; Chen ZJ; Wang QY; Qian M; Sheng XF Chemosphere; 2011 Mar; 83(1):57-62. PubMed ID: 21315404 [TBL] [Abstract][Full Text] [Related]
11. Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria. Sun L; Wang X; Li Y Int J Phytoremediation; 2016; 18(5):494-501. PubMed ID: 26587767 [TBL] [Abstract][Full Text] [Related]
12. Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Fan M; Liu Z; Nan L; Wang E; Chen W; Lin Y; Wei G Microbiol Res; 2018 Dec; 217():51-59. PubMed ID: 30384908 [TBL] [Abstract][Full Text] [Related]
13. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
14. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils. Wu Z; Kong Z; Lu S; Huang C; Huang S; He Y; Wu L J Gen Appl Microbiol; 2019 Dec; 65(5):254-264. PubMed ID: 31243191 [TBL] [Abstract][Full Text] [Related]
15. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation. Ma Y; Oliveira RS; Wu L; Luo Y; Rajkumar M; Rocha I; Freitas H J Toxicol Environ Health A; 2015; 78(13-14):931-44. PubMed ID: 26167758 [TBL] [Abstract][Full Text] [Related]
16. Rhizosphere bacteria of Costularia spp. from ultramafic soils in New Caledonia: diversity, tolerance to extreme edaphic conditions, and role in plant growth and mineral nutrition. Gonin M; Gensous S; Lagrange A; Ducousso M; Amir H; Jourand P Can J Microbiol; 2013 Mar; 59(3):164-74. PubMed ID: 23540334 [TBL] [Abstract][Full Text] [Related]
17. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Wu SC; Cheung KC; Luo YM; Wong MH Environ Pollut; 2006 Mar; 140(1):124-35. PubMed ID: 16150522 [TBL] [Abstract][Full Text] [Related]
18. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. He H; Ye Z; Yang D; Yan J; Xiao L; Zhong T; Yuan M; Cai X; Fang Z; Jing Y Chemosphere; 2013 Feb; 90(6):1960-5. PubMed ID: 23177711 [TBL] [Abstract][Full Text] [Related]
19. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Ma Y; Rajkumar M; Freitas H Chemosphere; 2009 May; 75(6):719-25. PubMed ID: 19232424 [TBL] [Abstract][Full Text] [Related]
20. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Rizvi A; Khan MS Ecotoxicol Environ Saf; 2018 Aug; 157():9-20. PubMed ID: 29605647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]