These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 23819298)
1. Copper-resistant bacteria enhance plant growth and copper phytoextraction. Yang R; Luo C; Chen Y; Wang G; Xu Y; Shen Z Int J Phytoremediation; 2013; 15(6):573-84. PubMed ID: 23819298 [TBL] [Abstract][Full Text] [Related]
2. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related]
3. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11. Huang GH; Tian HH; Liu HY; Fan XW; Liang Y; Li YZ Int J Phytoremediation; 2013; 15(10):991-1009. PubMed ID: 23819291 [TBL] [Abstract][Full Text] [Related]
4. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization. Li Y; Wang Q; Wang L; He LY; Sheng XF Ecotoxicol Environ Saf; 2016 Feb; 124():163-168. PubMed ID: 26517728 [TBL] [Abstract][Full Text] [Related]
5. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Zhang YF; He LY; Chen ZJ; Wang QY; Qian M; Sheng XF Chemosphere; 2011 Mar; 83(1):57-62. PubMed ID: 21315404 [TBL] [Abstract][Full Text] [Related]
6. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil. Kumar KV; Patra DD Int J Phytoremediation; 2013; 15(8):743-55. PubMed ID: 23819272 [TBL] [Abstract][Full Text] [Related]
7. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. Wang W; Deng Z; Tan H; Cao L Int J Phytoremediation; 2013; 15(5):488-97. PubMed ID: 23488174 [TBL] [Abstract][Full Text] [Related]
8. The effect of soil bioaugmentation with strains of Pseudomonas on Cd, Zn and Cu uptake by Sinapis alba L. Płociniczak T; Kukla M; Wątroba R; Piotrowska-Seget Z Chemosphere; 2013 May; 91(9):1332-7. PubMed ID: 23561856 [TBL] [Abstract][Full Text] [Related]
9. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX; Wang YP; Lin Q; Luo YM Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516 [TBL] [Abstract][Full Text] [Related]
10. Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. Sheng X; Sun L; Huang Z; He L; Zhang W; Chen Z J Environ Manage; 2012 Jul; 103():58-64. PubMed ID: 22459071 [TBL] [Abstract][Full Text] [Related]
11. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chiu KK; Ye ZH; Wong MH Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905 [TBL] [Abstract][Full Text] [Related]
12. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
13. Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Chang P; Gerhardt KE; Huang XD; Yu XM; Glick BR; Gerwing PD; Greenberg BM Int J Phytoremediation; 2014; 16(7-12):1133-47. PubMed ID: 24933907 [TBL] [Abstract][Full Text] [Related]
14. Copper phytoextraction in tandem with oilseed production using commercial cultivars and mutant lines of sunflower. Kolbas A; Mench M; Herzig R; Nehnevajova E; Bes CM Int J Phytoremediation; 2011; 13 Suppl 1():55-76. PubMed ID: 22046751 [TBL] [Abstract][Full Text] [Related]
15. Bacteria associated with yellow lupine grown on a metal-contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction. Weyens N; Gielen M; Beckers B; Boulet J; van der Lelie D; Taghavi S; Carleer R; Vangronsveld J Plant Biol (Stuttg); 2014 Sep; 16(5):988-96. PubMed ID: 24400887 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of a plant growth-promoting rhizobacterium, Serratia sp. SY5. Koo SY; Cho KS J Microbiol Biotechnol; 2009 Nov; 19(11):1431-8. PubMed ID: 19996698 [TBL] [Abstract][Full Text] [Related]
17. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Rizvi A; Khan MS Ecotoxicol Environ Saf; 2018 Aug; 157():9-20. PubMed ID: 29605647 [TBL] [Abstract][Full Text] [Related]
18. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Andreazza R; Okeke BC; Lambais MR; Bortolon L; de Melo GW; Camargo FA Chemosphere; 2010 Nov; 81(9):1149-54. PubMed ID: 20937516 [TBL] [Abstract][Full Text] [Related]
19. Effects of EDDS and plant-growth-promoting bacteria on plant uptake of trace metals and PCBs from e-waste-contaminated soil. Luo C; Wang S; Wang Y; Yang R; Zhang G; Shen Z J Hazard Mater; 2015 Apr; 286():379-85. PubMed ID: 25658198 [TBL] [Abstract][Full Text] [Related]
20. IAA is more effective than EDTA in enhancing phytoremediation potential for cadmium and copper contaminated soils. Shah N; Irshad M; Murad W; Hamayun M; Qadir M; Hussain A; Begum HA; Alrefaei AF; Almutairi MH; Ahmad A; Ali S BMC Plant Biol; 2024 Aug; 24(1):815. PubMed ID: 39210254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]