These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 23819298)
41. Effects of plant growth-promoting bacteria on EDTA-assisted phytostabilization of heavy metals in a contaminated calcareous soil. Hamidpour M; Nemati H; Abbaszadeh Dahaji P; Roosta HR Environ Geochem Health; 2020 Aug; 42(8):2535-2545. PubMed ID: 31583504 [TBL] [Abstract][Full Text] [Related]
42. [Isolation and biodiversity of copper-resistant bacteria from rhizosphere soil of Elsholtzia splendens]. Sun L; He L; Zhang Y; Zhang W; Wang Q; Sheng X Wei Sheng Wu Xue Bao; 2009 Oct; 49(10):1360-6. PubMed ID: 20069883 [TBL] [Abstract][Full Text] [Related]
43. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements. Rivelli AR; De Maria S; Puschenreiter M; Gherbin P Int J Phytoremediation; 2012 Apr; 14(4):320-34. PubMed ID: 22567714 [TBL] [Abstract][Full Text] [Related]
44. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil. Tara N; Afzal M; Ansari TM; Tahseen R; Iqbal S; Khan QM Int J Phytoremediation; 2014; 16(7-12):1268-77. PubMed ID: 24933917 [TBL] [Abstract][Full Text] [Related]
46. Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. Babu AG; Shim J; Bang KS; Shea PJ; Oh BT J Environ Manage; 2014 Jan; 132():129-34. PubMed ID: 24291586 [TBL] [Abstract][Full Text] [Related]
47. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Afzal M; Yousaf S; Reichenauer TG; Sessitsch A Int J Phytoremediation; 2012 Jan; 14(1):35-47. PubMed ID: 22567693 [TBL] [Abstract][Full Text] [Related]
48. Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake. Li K; Pidatala VR; Shaik R; Datta R; Ramakrishna W Environ Sci Technol; 2014 Jan; 48(2):1184-93. PubMed ID: 24383886 [TBL] [Abstract][Full Text] [Related]
49. Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.). Liu DH; Jiang WS; Hou WQ J Environ Sci (China); 2001 Apr; 13(2):228-32. PubMed ID: 11590748 [TBL] [Abstract][Full Text] [Related]
50. Growth-promoting bacteria and arbuscular mycorrhizal fungus enhance maize tolerance to saline stress. de Carvalho Neta SJ; Araújo VLVP; Fracetto FJC; da Silva CCG; de Souza ER; Silva WR; Lumini E; Fracetto GGM Microbiol Res; 2024 Jul; 284():127708. PubMed ID: 38599021 [TBL] [Abstract][Full Text] [Related]
51. Effects of surface-modified nano-scale carbon black on Cu and Zn fractionations in contaminated soil. Cheng JM; Liu YZ; Wang HW Int J Phytoremediation; 2014; 16(1):86-94. PubMed ID: 24912217 [TBL] [Abstract][Full Text] [Related]
52. Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Fan M; Liu Z; Nan L; Wang E; Chen W; Lin Y; Wei G Microbiol Res; 2018 Dec; 217():51-59. PubMed ID: 30384908 [TBL] [Abstract][Full Text] [Related]
53. Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. Srivastava S; Verma PC; Chaudhry V; Singh N; Abhilash PC; Kumar KV; Sharma N; Singh N J Hazard Mater; 2013 Nov; 262():1039-47. PubMed ID: 22939092 [TBL] [Abstract][Full Text] [Related]
54. Rhizospheric bacteria alleviate salt-produced stress in sunflower. Shilev S; Sancho ED; Benlloch-González M J Environ Manage; 2012 Mar; 95 Suppl():S37-41. PubMed ID: 20685030 [TBL] [Abstract][Full Text] [Related]
55. Pseudomonas species isolated from tobacco seed promote root growth and reduce lead contents in Nicotiana tobacum K326. Li J; Zheng B; Hu R; Liu Y; Jing Y; Xiao Y; Sun M; Chen W; Zhou Q Can J Microbiol; 2019 Mar; 65(3):214-223. PubMed ID: 30457895 [TBL] [Abstract][Full Text] [Related]
56. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Ma Y; Rajkumar M; Moreno A; Zhang C; Freitas H Chemosphere; 2017 Oct; 185():75-85. PubMed ID: 28686889 [TBL] [Abstract][Full Text] [Related]
57. Aided phytoextraction of Cu, Pb, Zn, and As in copper-contaminated soils with tobacco and sunflower in crop rotation: Mobility and phytoavailability assessment. Hattab-Hambli N; Motelica-Heino M; Mench M Chemosphere; 2016 Feb; 145():543-50. PubMed ID: 26706463 [TBL] [Abstract][Full Text] [Related]
58. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Shaharoona B; Arshad M; Zahir ZA Lett Appl Microbiol; 2006 Feb; 42(2):155-9. PubMed ID: 16441381 [TBL] [Abstract][Full Text] [Related]
59. The improved phytoextraction of lead (Pb) and the growth of maize (Zeamays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Hadi F; Bano A; Fuller MP Chemosphere; 2010 Jun; 80(4):457-62. PubMed ID: 20435330 [TBL] [Abstract][Full Text] [Related]
60. The Effect of Pollination on Cd Phytoextraction From Soil by Maize (Zea mays L.). Xu W; Lu G; Wang R; Guo C; Liao C; Yi X; Dang Z Int J Phytoremediation; 2015; 17(10):945-50. PubMed ID: 25581531 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]