These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 23819575)
1. Cutting edge proteomics: benchmarking of six commercial trypsins. Bunkenborg J; Espadas G; Molina H J Proteome Res; 2013 Aug; 12(8):3631-41. PubMed ID: 23819575 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive analysis of protein digestion using six trypsins reveals the origin of trypsin as a significant source of variability in proteomics. Walmsley SJ; Rudnick PA; Liang Y; Dong Q; Stein SE; Nesvizhskii AI J Proteome Res; 2013 Dec; 12(12):5666-80. PubMed ID: 24116745 [TBL] [Abstract][Full Text] [Related]
3. Understanding the role of proteolytic digestion on discovery and targeted proteomic measurements using liquid chromatography tandem mass spectrometry and design of experiments. Loziuk PL; Wang J; Li Q; Sederoff RR; Chiang VL; Muddiman DC J Proteome Res; 2013 Dec; 12(12):5820-9. PubMed ID: 24144163 [TBL] [Abstract][Full Text] [Related]
4. Why less is more when generating tryptic peptides in bottom-up proteomics. Hildonen S; Halvorsen TG; Reubsaet L Proteomics; 2014 Sep; 14(17-18):2031-41. PubMed ID: 25044798 [TBL] [Abstract][Full Text] [Related]
5. Post-digestion ¹⁸O exchange/labeling for quantitative shotgun proteomics of membrane proteins. Ye X; Luke BT; Johann DJ; Chan KC; Prieto DA; Ono A; Veenstra TD; Blonder J Methods Mol Biol; 2012; 893():223-40. PubMed ID: 22665304 [TBL] [Abstract][Full Text] [Related]
6. Protein identification by accurate mass matrix-assisted laser desorption/ionization imaging of tryptic peptides. Schober Y; Schramm T; Spengler B; Römpp A Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2475-83. PubMed ID: 21818808 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the possible proteomic application of trypsin from Streptomyces griseus. Stosová T; Sebela M; Rehulka P; Sedo O; Havlis J; Zdráhal Z Anal Biochem; 2008 May; 376(1):94-102. PubMed ID: 18261455 [TBL] [Abstract][Full Text] [Related]
9. Tryptic Peptides Bearing C-Terminal Dimethyllysine Need to Be Considered during the Analysis of Lysine Dimethylation in Proteomic Study. Chen M; Zhang M; Zhai L; Hu H; Liu P; Tan M J Proteome Res; 2017 Sep; 16(9):3460-3469. PubMed ID: 28730820 [TBL] [Abstract][Full Text] [Related]
10. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry. Chen SH; Hsu JL; Lin FS Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949 [TBL] [Abstract][Full Text] [Related]
11. Assessment of meat authenticity using bioinformatics, targeted peptide biomarkers and high-resolution mass spectrometry. Ruiz Orduna A; Husby E; Yang CT; Ghosh D; Beaudry F Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(10):1709-17. PubMed ID: 26241836 [TBL] [Abstract][Full Text] [Related]
12. Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. Glatter T; Ludwig C; Ahrné E; Aebersold R; Heck AJ; Schmidt A J Proteome Res; 2012 Nov; 11(11):5145-56. PubMed ID: 23017020 [TBL] [Abstract][Full Text] [Related]
13. Lysine Propionylation To Boost Sequence Coverage and Enable a "Silent SILAC" Strategy for Relative Protein Quantification. Schräder CU; Moore S; Goodarzi AA; Schriemer DC Anal Chem; 2018 Aug; 90(15):9077-9084. PubMed ID: 29975514 [TBL] [Abstract][Full Text] [Related]
14. Addressing trypsin bias in large scale (phospho)proteome analysis by size exclusion chromatography and secondary digestion of large post-trypsin peptides. Tran BQ; Hernandez C; Waridel P; Potts A; Barblan J; Lisacek F; Quadroni M J Proteome Res; 2011 Feb; 10(2):800-11. PubMed ID: 21166477 [TBL] [Abstract][Full Text] [Related]
15. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue. Jiang H; Yuan H; Liang Y; Xia S; Zhao Q; Wu Q; Zhang L; Liang Z; Zhang Y J Chromatogr A; 2012 Jul; 1246():111-6. PubMed ID: 22446077 [TBL] [Abstract][Full Text] [Related]
16. Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in organic-aqueous solvent systems. Strader MB; Tabb DL; Hervey WJ; Pan C; Hurst GB Anal Chem; 2006 Jan; 78(1):125-34. PubMed ID: 16383319 [TBL] [Abstract][Full Text] [Related]
17. Unique tryptic peptides specific for bovine and human hemoglobin in the detection and confirmation of hemoglobin-based oxygen carriers. Guan F; Uboh C; Soma L; Luo Y; Driessen B Anal Chem; 2004 Sep; 76(17):5118-26. PubMed ID: 15373451 [TBL] [Abstract][Full Text] [Related]
18. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). Wu SL; Kim J; Hancock WS; Karger B J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266 [TBL] [Abstract][Full Text] [Related]
19. Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach. Bian Y; Ye M; Song C; Cheng K; Wang C; Wei X; Zhu J; Chen R; Wang F; Zou H J Proteome Res; 2012 May; 11(5):2828-37. PubMed ID: 22468782 [TBL] [Abstract][Full Text] [Related]
20. Recombinant acetylated trypsin demonstrates superior stability and higher activity than commercial products in quantitative proteomics studies. Wu F; Zhao M; Zhang Y; Su N; Xiong Z; Xu P Rapid Commun Mass Spectrom; 2016 Apr; 30(8):1059-66. PubMed ID: 27003043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]