BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 23819684)

  • 21. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy.
    Dell AI; Pawar S; Savage VM
    J Anim Ecol; 2014 Jan; 83(1):70-84. PubMed ID: 23692182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Body size, body size ratio, and prey type influence the functional response of damselfly nymphs.
    Uiterwaal SF; Mares C; DeLong JP
    Oecologia; 2017 Nov; 185(3):339-346. PubMed ID: 28936547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prey Limitation Drives Variation in Allometric Scaling of Predator-Prey Interactions.
    Costa-Pereira R; Araújo MS; Olivier RDS; Souza FL; Rudolf VHW
    Am Nat; 2018 Oct; 192(4):E139-E149. PubMed ID: 30205026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Size and scaling of predator-prey dynamics.
    Weitz JS; Levin SA
    Ecol Lett; 2006 May; 9(5):548-57. PubMed ID: 16643300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knowing your enemies: Integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests.
    Furlong MJ
    Insect Sci; 2015 Feb; 22(1):6-19. PubMed ID: 25081301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ratio- and predator-dependent functional forms for predators optimally foraging in patches.
    Anderson JJ
    Am Nat; 2010 Feb; 175(2):240-9. PubMed ID: 20028238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of vigilance on intraguild predation.
    Kimbrell T; Holt RD; Lundberg P
    J Theor Biol; 2007 Nov; 249(2):218-34. PubMed ID: 17888456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alternative stable states in communities with intraguild predation.
    Verdy A; Amarasekare P
    J Theor Biol; 2010 Jan; 262(1):116-28. PubMed ID: 19765596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What drives interaction strengths in complex food webs? A test with feeding rates of a generalist stream predator.
    Preston DL; Henderson JS; Falke LP; Segui LM; Layden TJ; Novak M
    Ecology; 2018 Jul; 99(7):1591-1601. PubMed ID: 29738085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Food-web complexity emerging from ecological dynamics on adaptive networks.
    Garcia-Domingo JL; Saldaña J
    J Theor Biol; 2007 Aug; 247(4):819-26. PubMed ID: 17512552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cascading top-down effects of changing oceanic predator abundances.
    Baum JK; Worm B
    J Anim Ecol; 2009 Jul; 78(4):699-714. PubMed ID: 19298616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prey body mass and richness underlie the persistence of a top predator.
    Guzman LM; Srivastava DS
    Proc Biol Sci; 2019 May; 286(1902):20190622. PubMed ID: 31064301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patterns of predation in a diverse predator-prey system.
    Sinclair AR; Mduma S; Brashares JS
    Nature; 2003 Sep; 425(6955):288-90. PubMed ID: 13679915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predator community structure and trophic linkage strength to a focal prey.
    Lundgren JG; Fergen JK
    Mol Ecol; 2014 Aug; 23(15):3790-8. PubMed ID: 24612337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The detectability half-life in arthropod predator-prey research: what it is, why we need it, how to measure it, and how to use it.
    Greenstone MH; Payton ME; Weber DC; Simmons AM
    Mol Ecol; 2014 Aug; 23(15):3799-813. PubMed ID: 24303920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arthropod food webs predicted from body size ratios are improved by incorporating prey defensive properties.
    Van De Walle R; Logghe G; Haas N; Massol F; Vandegehuchte ML; Bonte D
    J Anim Ecol; 2023 Apr; 92(4):913-924. PubMed ID: 36807906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Additional food supplements as a tool for biological conservation of predator-prey systems involving type III functional response: A qualitative and quantitative investigation.
    Srinivasu PDN; Vamsi DKK; Ananth VS
    J Theor Biol; 2018 Oct; 455():303-318. PubMed ID: 30036525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A derivation of Holling's type I, II and III functional responses in predator-prey systems.
    Dawes JH; Souza MO
    J Theor Biol; 2013 Jun; 327():11-22. PubMed ID: 23500600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stochastic modelling of prey depletion processes.
    Clerc T; Davison AC; Bersier LF
    J Theor Biol; 2009 Aug; 259(3):523-32. PubMed ID: 19409907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Warming can destabilize predator-prey interactions by shifting the functional response from Type III to Type II.
    Daugaard U; Petchey OL; Pennekamp F
    J Anim Ecol; 2019 Oct; 88(10):1575-1586. PubMed ID: 31257583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.