These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23819689)

  • 1. Mercury mobilization in a flooded soil by incorporation into metallic copper and metal sulfide nanoparticles.
    Hofacker AF; Voegelin A; Kaegi R; Kretzschmar R
    Environ Sci Technol; 2013 Jul; 47(14):7739-46. PubMed ID: 23819689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil.
    Beckers F; Awad YM; Beiyuan J; Abrigata J; Mothes S; Tsang DCW; Ok YS; Rinklebe J
    Environ Int; 2019 Jun; 127():276-290. PubMed ID: 30951944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomineralization of Cu
    Kimber RL; Bagshaw H; Smith K; Buchanan DM; Coker VS; Cavet JS; Lloyd JR
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles.
    Xiong Z; He F; Zhao D; Barnett MO
    Water Res; 2009 Dec; 43(20):5171-9. PubMed ID: 19748651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of S fertilizers on pore-water Cu dynamics and transformation in a contaminated paddy soil with various flooding periods.
    Yang J; Zhu S; Zheng C; Sun L; Liu J; Shi J
    J Hazard Mater; 2015 Apr; 286():432-9. PubMed ID: 25603292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic strength reduction and flow interruption enhanced colloid-facilitated Hg transport in contaminated soils.
    Zhu Y; Ma LQ; Dong X; Harris WG; Bonzongo JC; Han F
    J Hazard Mater; 2014 Jan; 264():286-92. PubMed ID: 24316802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simulation study of mercury release fluxes from soils in wet-dry rotation environment.
    Liang P; Zhang C; Yang Y; Wang D
    J Environ Sci (China); 2014 Jul; 26(7):1445-52. PubMed ID: 25079993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury fractionation in contaminated soils from the Idrija mercury mine region.
    Kocman D; Horvat M; Kotnik J
    J Environ Monit; 2004 Aug; 6(8):696-703. PubMed ID: 15292953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides.
    Zhang T; Kim B; Levard C; Reinsch BC; Lowry GV; Deshusses MA; Hsu-Kim H
    Environ Sci Technol; 2012 Jul; 46(13):6950-8. PubMed ID: 22145980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal mercury (Hg) distribution in soil samples by sedimentation field-flow fractionation coupled to mercury cold vapour generation atomic absorption spectroscopy.
    Santoro A; Terzano R; Medici L; Beciani M; Pagnoni A; Blo G
    J Environ Monit; 2012 Jan; 14(1):138-45. PubMed ID: 22089540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of natural purified humic acids in modifying mercury accessibility in water and soil.
    Cattani I; Zhang H; Beone GM; Del Re AA; Boccelli R; Trevisan M
    J Environ Qual; 2009; 38(2):493-501. PubMed ID: 19202019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal lattice defects in nanocrystalline metacinnabar in contaminated streambank soils suggest a role for biogenic sulfides in the formation of mercury sulfide phases.
    Koenigsmark F; Chiu M; Rivera N; Johs A; Eskelsen J; Leonard D; Robertson BK; Szynkiewicz A; Derolph C; Zhao L; Gu B; Hsu-Kim H; Pierce EM
    Environ Sci Process Impacts; 2023 Mar; 25(3):445-460. PubMed ID: 36692344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of soils from an industrial complex contaminated with elemental mercury.
    Miller CL; Watson DB; Lester BP; Lowe KA; Pierce EM; Liang L
    Environ Res; 2013 Aug; 125():20-9. PubMed ID: 23809204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury speciation analyses in HgCl(2)-contaminated soils and groundwater--implications for risk assessment and remediation strategies.
    Bollen A; Wenke A; Biester H
    Water Res; 2008 Jan; 42(1-2):91-100. PubMed ID: 17675134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems.
    Gerbig CA; Kim CS; Stegemeier JP; Ryan JN; Aiken GR
    Environ Sci Technol; 2011 Nov; 45(21):9180-7. PubMed ID: 21877758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles.
    Gong Y; Liu Y; Xiong Z; Kaback D; Zhao D
    Nanotechnology; 2012 Jul; 23(29):294007. PubMed ID: 22743738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Citrate-coated gold nanoparticles as smart scavengers for mercury(II) removal from polluted waters.
    Ojea-Jiménez I; López X; Arbiol J; Puntes V
    ACS Nano; 2012 Mar; 6(3):2253-60. PubMed ID: 22332645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions.
    Graham AM; Aiken GR; Gilmour CC
    Environ Sci Technol; 2012 Mar; 46(5):2715-23. PubMed ID: 22309093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania.
    Ikingura JR; Akagi H; Mujumba J; Messo C
    J Environ Manage; 2006 Oct; 81(2):167-73. PubMed ID: 16782263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.