These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23819710)

  • 1. Nucleation dynamics of active particles.
    Shen T; Qi X; Nellas RB
    J Phys Chem B; 2013 Oct; 117(42):12844-9. PubMed ID: 23819710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swimming motility plays a key role in the stochastic dynamics of cell clumping.
    Qi X; Nellas RB; Byrn MW; Russell MH; Bible AN; Alexandre G; Shen T
    Phys Biol; 2013 Apr; 10(2):026005. PubMed ID: 23416991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective dynamics in systems of active Brownian particles with dissipative interactions.
    Lobaskin V; Romenskyy M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052135. PubMed ID: 23767515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theory for the phase behavior of mixtures of active particles.
    Takatori SC; Brady JF
    Soft Matter; 2015 Oct; 11(40):7920-31. PubMed ID: 26323207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virial pressure in systems of spherical active Brownian particles.
    Winkler RG; Wysocki A; Gompper G
    Soft Matter; 2015 Sep; 11(33):6680-91. PubMed ID: 26221908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving fast-switching free energy estimates by dynamical freezing.
    Nicolini P; Chelli R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041124. PubMed ID: 19905290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective dynamics of self-propelled particles with variable speed.
    Mishra S; Tunstrøm K; Couzin ID; Huepe C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011901. PubMed ID: 23005446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swarming behavior of gradient-responsive Brownian particles in a porous medium.
    Grančič P; Štěpánek F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011916. PubMed ID: 23005461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single particle model to simulate the dynamics of entangled polymer melts.
    Kindt P; Briels WJ
    J Chem Phys; 2007 Oct; 127(13):134901. PubMed ID: 17919048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric Brownian motor driven by bubble formation in a hydrophobic channel.
    Arai N; Yasuoka K; Koishi T; Ebisuzaki T
    ACS Nano; 2010 Oct; 4(10):5905-13. PubMed ID: 20923165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-induced polar order of active Brownian particles in a harmonic trap.
    Hennes M; Wolff K; Stark H
    Phys Rev Lett; 2014 Jun; 112(23):238104. PubMed ID: 24972231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics and thermodynamics of air-driven active spinners.
    Farhadi S; Machaca S; Aird J; Torres Maldonado BO; Davis S; Arratia PE; Durian DJ
    Soft Matter; 2018 Jul; 14(27):5588-5594. PubMed ID: 29882572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanics and fluctuation spectrum of active gels.
    Levine AJ; MacKintosh FC
    J Phys Chem B; 2009 Mar; 113(12):3820-30. PubMed ID: 19296701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuation-response relations for nonequilibrium diffusions with memory.
    Maes C; Safaverdi S; Visco P; van Wijland F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022125. PubMed ID: 23496477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brownian dynamics simulation and experimental study of colloidal particle deposition in a microchannel flow.
    Unni HN; Yang C
    J Colloid Interface Sci; 2005 Nov; 291(1):28-36. PubMed ID: 15964576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brownian dynamics simulation of adsorbed layers of interacting particles subjected to large extensional deformation.
    Pugnaloni LA; Ettelaie R; Dickinson E
    J Colloid Interface Sci; 2005 Jul; 287(2):401-14. PubMed ID: 15925604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brownian dynamics simulations with hard-body interactions: spherical particles.
    Behringer H; Eichhorn R
    J Chem Phys; 2012 Oct; 137(16):164108. PubMed ID: 23126696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New method to analyze simulations of activated processes.
    Wedekind J; Strey R; Reguera D
    J Chem Phys; 2007 Apr; 126(13):134103. PubMed ID: 17430012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.