BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23819782)

  • 1. Hypoxia and P1 receptor activation regulate the high-affinity concentrative adenosine transporter CNT2 in differentiated neuronal PC12 cells.
    Medina-Pulido L; Molina-Arcas M; Justicia C; Soriano E; Burgaya F; Planas AM; Pastor-Anglada M
    Biochem J; 2013 Sep; 454(3):437-45. PubMed ID: 23819782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of CNT2 and ENT1 transcripts in rat brain: selective decrease of CNT2 mRNA in the cerebral cortex of sleep-deprived rats.
    Guillén-Gómez E; Calbet M; Casado J; de Lecea L; Soriano E; Pastor-Anglada M; Burgaya F
    J Neurochem; 2004 Aug; 90(4):883-93. PubMed ID: 15287894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Link between high-affinity adenosine concentrative nucleoside transporter-2 (CNT2) and energy metabolism in intestinal and liver parenchymal cells.
    Huber-Ruano I; Pinilla-Macua I; Torres G; Casado FJ; Pastor-Anglada M
    J Cell Physiol; 2010 Nov; 225(2):620-30. PubMed ID: 20506327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-sensitive K(+) channels regulate the concentrative adenosine transporter CNT2 following activation by A(1) adenosine receptors.
    Duflot S; Riera B; Fernández-Veledo S; Casadó V; Norman RI; Casado FJ; Lluís C; Franco R; Pastor-Anglada M
    Mol Cell Biol; 2004 Apr; 24(7):2710-9. PubMed ID: 15024061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloned blood-brain barrier adenosine transporter is identical to the rat concentrative Na+ nucleoside cotransporter CNT2.
    Li JY; Boado RJ; Pardridge WM
    J Cereb Blood Flow Metab; 2001 Aug; 21(8):929-36. PubMed ID: 11487728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bile acids alter the subcellular localization of CNT2 (concentrative nucleoside cotransporter) and increase CNT2-related transport activity in liver parenchymal cells.
    Fernández-Veledo S; Huber-Ruano I; Aymerich I; Duflot S; Casado FJ; Pastor-Anglada M
    Biochem J; 2006 Apr; 395(2):337-44. PubMed ID: 16390326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Striking species difference in the contribution of concentrative nucleoside transporter 2 to nucleoside uptake between mouse and rat hepatocytes.
    Furihata T; Fukuchi Y; Iikura M; Hashizume M; Miyajima A; Nagai M; Chiba K
    Antimicrob Agents Chemother; 2010 Jul; 54(7):3035-8. PubMed ID: 20421393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleoside transporter expression and function in cultured mouse astrocytes.
    Peng L; Huang R; Yu AC; Fung KY; Rathbone MP; Hertz L
    Glia; 2005 Oct; 52(1):25-35. PubMed ID: 15892125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of nucleoside uptake in rat placenta and induction of placental CNT2 in experimental diabetes.
    Nishimura T; Chishu T; Tomi M; Nakamura R; Sato K; Kose N; Sai Y; Nakashima E
    Drug Metab Pharmacokinet; 2012; 27(4):439-46. PubMed ID: 22354287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hypoxic episode during cardiogenesis downregulates the adenosinergic system and alters the myocardial anoxic tolerance.
    Robin E; Marcillac F; Raddatz E
    Am J Physiol Regul Integr Comp Physiol; 2015 Apr; 308(7):R614-26. PubMed ID: 25632022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional crosstalk between the adenosine transporter CNT3 and purinergic receptors in the biliary epithelia.
    Godoy V; Banales JM; Medina JF; Pastor-Anglada M
    J Hepatol; 2014 Dec; 61(6):1337-43. PubMed ID: 25034758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential kinetics of transport of 2',3'-dideoxyinosine and adenosine via concentrative Na+ nucleoside transporter CNT2 cloned from rat blood-brain barrier.
    Li JY; Boado RJ; Pardridge WM
    J Pharmacol Exp Ther; 2001 Nov; 299(2):735-40. PubMed ID: 11602688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine deaminase 1 and concentrative nucleoside transporters 2 and 3 regulate adenosine on the apical surface of human airway epithelia: implications for inflammatory lung diseases.
    Hirsh AJ; Stonebraker JR; van Heusden CA; Lazarowski ER; Boucher RC; Picher M
    Biochemistry; 2007 Sep; 46(36):10373-83. PubMed ID: 17696452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The adenosine transporter, mENT1, is a target for adenosine receptor signaling and protein kinase Cepsilon in hypoxic and pharmacological preconditioning in the mouse cardiomyocyte cell line, HL-1.
    Chaudary N; Naydenova Z; Shuralyova I; Coe IR
    J Pharmacol Exp Ther; 2004 Sep; 310(3):1190-8. PubMed ID: 15131243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport.
    Kobayashi S; Zimmermann H; Millhorn DE
    J Neurochem; 2000 Feb; 74(2):621-32. PubMed ID: 10646513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrative Nucleoside Transporter 1 (ENT1,
    Cerveny L; Ptackova Z; Ceckova M; Karahoda R; Karbanova S; Jiraskova L; Greenwood SL; Glazier JD; Staud F
    Drug Metab Dispos; 2018 Nov; 46(11):1817-1826. PubMed ID: 30097436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental regulation of the concentrative nucleoside transporters CNT1 and CNT2 in rat liver.
    del Santo B; Tarafa G; Felipe A; Casado FJ; Pastor-Anglada M
    J Hepatol; 2001 Jun; 34(6):873-80. PubMed ID: 11451171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional and molecular characterization of adenosine transport at the rat inner blood-retinal barrier.
    Nagase K; Tomi M; Tachikawa M; Hosoya K
    Biochim Biophys Acta; 2006 Jan; 1758(1):13-9. PubMed ID: 16487924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevalence of unidirectional Na+-dependent adenosine transport and altered potential for adenosine generation in diabetic cardiac myocytes.
    Podgorska M; Kocbuch K; Grden M; Szutowicz A; Pawelczyk T
    Basic Res Cardiol; 2006 May; 101(3):214-22. PubMed ID: 16369729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interferon-gamma regulates nucleoside transport systems in macrophages through signal transduction and activator of transduction factor 1 (STAT1)-dependent and -independent signalling pathways.
    Soler C; Felipe A; García-Manteiga J; Serra M; Guillén-Gómez E; Casado FJ; MacLeod C; Modolell M; Pastor-Anglada M; Celada A
    Biochem J; 2003 Nov; 375(Pt 3):777-83. PubMed ID: 12868960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.