BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23820034)

  • 1. A 3D electro-mechanical continuum model for simulating skeletal muscle contraction.
    Hernández-Gascón B; Grasa J; Calvo B; Rodríguez JF
    J Theor Biol; 2013 Oct; 335():108-18. PubMed ID: 23820034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle.
    Grasa J; Ramírez A; Osta R; Muñoz MJ; Soteras F; Calvo B
    Biomech Model Mechanobiol; 2011 Oct; 10(5):779-87. PubMed ID: 21127938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction.
    Tsui CP; Tang CY; Leung CP; Cheng KW; Ng YF; Chow DH; Li CK
    Biomed Mater Eng; 2004; 14(3):271-9. PubMed ID: 15299239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue.
    Hedenstierna S; Halldin P; Brolin K
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):627-39. PubMed ID: 18642161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model.
    Khodaei H; Mostofizadeh S; Brolin K; Johansson H; Osth J
    Proc Inst Mech Eng H; 2013 May; 227(5):571-80. PubMed ID: 23637267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element model of intramuscular pressure during isometric contraction of skeletal muscle.
    Jenkyn TR; Koopman B; Huijing P; Lieber RL; Kaufman KR
    Phys Med Biol; 2002 Nov; 47(22):4043-61. PubMed ID: 12476981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On a phenomenological model for fatigue effects in skeletal muscles.
    Böl M; Stark H; Schilling N
    J Theor Biol; 2011 Jul; 281(1):122-32. PubMed ID: 20211632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model for isometric and isotonic muscle contractions.
    De Vita R; Grange R; Nardinocchi P; Teresi L
    J Theor Biol; 2017 Jul; 425():1-10. PubMed ID: 28483567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energetic cost of activation in mouse fast-twitch muscle is the same whether measured using reduced filament overlap or N-benzyl-p-toluenesulphonamide.
    Barclay CJ; Lichtwark GA; Curtin NA
    Acta Physiol (Oxf); 2008 Aug; 193(4):381-91. PubMed ID: 18373742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the role of Ca
    Karami M; Calvo B; Zohoor H; Firoozbakhsh K; Grasa J
    J Theor Biol; 2019 Jan; 461():76-83. PubMed ID: 30340054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On simulating sustained isometric muscle fatigue: a phenomenological model considering different fiber metabolisms.
    Grasa J; Sierra M; Muñoz MJ; Soteras F; Osta R; Calvo B; Miana-Mena FJ
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1373-85. PubMed ID: 24706095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force/velocity curves of fast oxidative and fast glycolytic parts of rat medial gastrocnemius muscle vary for concentric but not eccentric activity.
    Rijkelijkhuizen JM; de Ruiter CJ; Huijing PA; de Haan A
    Pflugers Arch; 2003 Jul; 446(4):497-503. PubMed ID: 12719979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracting low-velocity concentric and eccentric dynamic muscle properties from isometric contraction experiments.
    Rockenfeller R; Günther M
    Math Biosci; 2016 Aug; 278():77-93. PubMed ID: 27321191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromechanical properties of the triceps surae in young and older adults.
    Barber LA; Barrett RS; Gillett JG; Cresswell AG; Lichtwark GA
    Exp Gerontol; 2013 Nov; 48(11):1147-55. PubMed ID: 23886750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of tendon on muscle force in dynamic isometric contractions: a simulation study.
    van Soest AJ; Huijing PA; Solomonow M
    J Biomech; 1995 Jul; 28(7):801-7. PubMed ID: 7657678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of human skeletal muscle in vivo: comparison of isometric, concentric, and eccentric muscle action.
    Ryschon TW; Fowler MD; Wysong RE; Anthony A; Balaban RS
    J Appl Physiol (1985); 1997 Sep; 83(3):867-74. PubMed ID: 9292475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isometric tetanic force measurement method of the tibialis anterior in the rat.
    Shin RH; Vathana T; Giessler GA; Friedrich PF; Bishop AT; Shin AY
    Microsurgery; 2008; 28(6):452-7. PubMed ID: 18623151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On Using Model Populations to Determine Mechanical Properties of Skeletal Muscle. Application to Concentric Contraction Simulation.
    Sierra M; Miana-Mena FJ; Calvo B; Muñoz MJ; Rodríguez JF; Grasa J
    Ann Biomed Eng; 2015 Oct; 43(10):2444-55. PubMed ID: 25691399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On a three-dimensional constitutive model for history effects in skeletal muscles.
    Seydewitz R; Siebert T; Böl M
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1665-1681. PubMed ID: 31102082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A continuum model for skeletal muscle contraction at homogeneous finite deformations.
    Sharifimajd B; Stålhand J
    Biomech Model Mechanobiol; 2013 Oct; 12(5):965-73. PubMed ID: 23184063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.