These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 23820279)
1. Biplane angiography for experimental validation of computational fluid dynamic models of blood flow in artificial lungs. Jones CC; Capasso P; McDonough JM; Wang D; Rosenstein KS; Zwischenberger JB ASAIO J; 2013; 59(4):397-404. PubMed ID: 23820279 [TBL] [Abstract][Full Text] [Related]
2. Improved computational fluid dynamic simulations of blood flow in membrane oxygenators from X-ray imaging. Jones CC; McDonough JM; Capasso P; Wang D; Rosenstein KS; Zwischenberger JB Ann Biomed Eng; 2013 Oct; 41(10):2088-98. PubMed ID: 23673653 [TBL] [Abstract][Full Text] [Related]
3. Numerical modeling of anisotropic fiber bundle behavior in oxygenators. Bhavsar SS; Schmitz-Rode T; Steinseifer U Artif Organs; 2011 Nov; 35(11):1095-102. PubMed ID: 21973082 [TBL] [Abstract][Full Text] [Related]
4. Particle Image Velocimetry Used to Qualitatively Validate Computational Fluid Dynamic Simulations in an Oxygenator: A Proof of Concept. Schlanstein PC; Hesselmann F; Jansen SV; Gemsa J; Kaufmann TA; Klaas M; Roggenkamp D; Schröder W; Schmitz-Rode T; Steinseifer U; Arens J Cardiovasc Eng Technol; 2015 Sep; 6(3):340-51. PubMed ID: 26577365 [TBL] [Abstract][Full Text] [Related]
5. Experimental Approach to Visualize Flow in a Stacked Hollow Fiber Bundle of an Artificial Lung With Particle Image Velocimetry. Kaesler A; Schlanstein PC; Hesselmann F; Büsen M; Klaas M; Roggenkamp D; Schmitz-Rode T; Steinseifer U; Arens J Artif Organs; 2017 Jun; 41(6):529-538. PubMed ID: 27925231 [TBL] [Abstract][Full Text] [Related]
6. Computational Modeling of Oxygen Transfer in Artificial Lungs. Kaesler A; Rosen M; Schmitz-Rode T; Steinseifer U; Arens J Artif Organs; 2018 Aug; 42(8):786-799. PubMed ID: 30043394 [TBL] [Abstract][Full Text] [Related]
7. A validated CFD model to predict O₂ and CO₂ transfer within hollow fiber membrane oxygenators. Hormes M; Borchardt R; Mager I; Rode TS; Behr M; Steinseifer U Int J Artif Organs; 2011 Mar; 34(3):317-25. PubMed ID: 21462147 [TBL] [Abstract][Full Text] [Related]
8. Modeling of blood flow in a balloon-pulsed intravascular respiratory catheter. Zinovik IN; Federspiel WJ ASAIO J; 2007; 53(4):464-8. PubMed ID: 17667232 [TBL] [Abstract][Full Text] [Related]
9. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. Rayz VL; Boussel L; Acevedo-Bolton G; Martin AJ; Young WL; Lawton MT; Higashida R; Saloner D J Biomech Eng; 2008 Oct; 130(5):051011. PubMed ID: 19045518 [TBL] [Abstract][Full Text] [Related]
16. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry. Su B; Chua LP; Wang X Artif Organs; 2012 Apr; 36(4):359-67. PubMed ID: 22040356 [TBL] [Abstract][Full Text] [Related]
17. How Computational Modeling can Help to Predict Gas Transfer in Artificial Lungs Early in the Design Process. Kaesler A; Rosen M; Schlanstein PC; Wagner G; Groß-Hardt S; Schmitz-Rode T; Steinseifer U; Arens J ASAIO J; 2020 Jun; 66(6):683-690. PubMed ID: 31789656 [TBL] [Abstract][Full Text] [Related]
18. CFD simulation of non-Newtonian fluid flow in anaerobic digesters. Wu B; Chen S Biotechnol Bioeng; 2008 Feb; 99(3):700-11. PubMed ID: 17705227 [TBL] [Abstract][Full Text] [Related]
19. Intravascular blood oxygenation using hollow fibers in a disk-shaped configuration: experimental evaluation of the relationship between porosity and performance. Cattaneo GF; Reul H; Schmitz-Rode T; Steinseifer U ASAIO J; 2006; 52(2):180-5. PubMed ID: 16557105 [TBL] [Abstract][Full Text] [Related]
20. Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung: computational and experimental studies. Zierenberg JR; Fujioka H; Cook KE; Grotberg JB J Biomech Eng; 2008 Jun; 130(3):031019. PubMed ID: 18532868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]