These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 23820428)

  • 1. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance.
    Dupuis MÈ; Villion M; Magadán AH; Moineau S
    Nat Commun; 2013; 4():2087. PubMed ID: 23820428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling bacterial immune systems: strategies for expression of toxic - but useful - molecules.
    Djordjevic M
    Biosystems; 2013 May; 112(2):139-44. PubMed ID: 23499818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of CRISPR/cas system in the development of bacteriophage resistance.
    Szczepankowska A
    Adv Virus Res; 2012; 82():289-338. PubMed ID: 22420856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system.
    Magadán AH; Dupuis MÈ; Villion M; Moineau S
    PLoS One; 2012; 7(7):e40913. PubMed ID: 22911717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages.
    Hynes AP; Villion M; Moineau S
    Nat Commun; 2014 Jul; 5():4399. PubMed ID: 25056268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic impact of CRISPR immunization against bacteriophages.
    Barrangou R; Coûté-Monvoisin AC; Stahl B; Chavichvily I; Damange F; Romero DA; Boyaval P; Fremaux C; Horvath P
    Biochem Soc Trans; 2013 Dec; 41(6):1383-91. PubMed ID: 24256225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.
    Guo L; Xu K; Liu Z; Zhang C; Xin Y; Zhang Z
    Anal Biochem; 2015 Jun; 478():131-3. PubMed ID: 25748774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability in the durability of CRISPR-Cas immunity.
    Chabas H; Nicot A; Meaden S; Westra ER; Tremblay DM; Pradier L; Lion S; Moineau S; Gandon S
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180097. PubMed ID: 30905283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity.
    Malone LM; Warring SL; Jackson SA; Warnecke C; Gardner PP; Gumy LF; Fineran PC
    Nat Microbiol; 2020 Jan; 5(1):48-55. PubMed ID: 31819217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
    Hoikkala V; Ravantti J; Díez-Villaseñor C; Tiirola M; Conrad RA; McBride MJ; Moineau S; Sundberg LR
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [CRISPR adaptive immunity systems of procaryotes].
    Mol Biol (Mosk); 2012; 46(2):195-203. PubMed ID: 22670515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA.
    Garneau JE; Dupuis MÈ; Villion M; Romero DA; Barrangou R; Boyaval P; Fremaux C; Horvath P; Magadán AH; Moineau S
    Nature; 2010 Nov; 468(7320):67-71. PubMed ID: 21048762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) of Streptococcus thermophilus St-I and its Bacteriophage-Insensitive Mutants (BIM) Derivatives.
    Li W; Bian X; Evivie SE; Huo GC
    Curr Microbiol; 2016 Sep; 73(3):393-400. PubMed ID: 27378131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription profile of Thermus thermophilus CRISPR systems after phage infection.
    Agari Y; Sakamoto K; Tamakoshi M; Oshima T; Kuramitsu S; Shinkai A
    J Mol Biol; 2010 Jan; 395(2):270-81. PubMed ID: 19891975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas Systems in Prokaryotes.
    Burmistrz M; Pyrć K
    Pol J Microbiol; 2015; 64(3):193-202. PubMed ID: 26638527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR: new horizons in phage resistance and strain identification.
    Barrangou R; Horvath P
    Annu Rev Food Sci Technol; 2012; 3():143-62. PubMed ID: 22224556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting natural adaptation of the Streptococcus thermophilus CRISPR-Cas systems in research and classroom settings.
    Hynes AP; Lemay ML; Trudel L; Deveau H; Frenette M; Tremblay DM; Moineau S
    Nat Protoc; 2017 Mar; 12(3):547-565. PubMed ID: 28207002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems.
    Silas S; Lucas-Elio P; Jackson SA; Aroca-Crevillén A; Hansen LL; Fineran PC; Fire AZ; Sánchez-Amat A
    Elife; 2017 Aug; 6():. PubMed ID: 28826484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity.
    Westra ER; Swarts DC; Staals RH; Jore MM; Brouns SJ; van der Oost J
    Annu Rev Genet; 2012; 46():311-39. PubMed ID: 23145983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.