BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1182 related articles for article (PubMed ID: 23820649)

  • 1. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease.
    Cooper DN; Krawczak M; Polychronakos C; Tyler-Smith C; Kehrer-Sawatzki H
    Hum Genet; 2013 Oct; 132(10):1077-130. PubMed ID: 23820649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penetrance and Expressivity in Inherited Cancer Predisposing Syndromes.
    Taeubner J; Wieczorek D; Yasin L; Brozou T; Borkhardt A; Kuhlen M
    Trends Cancer; 2018 Nov; 4(11):718-728. PubMed ID: 30352675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of PRPF31 gene expression by MSR1 repeat elements causes incomplete penetrance in retinitis pigmentosa.
    Rose AM; Shah AZ; Venturini G; Krishna A; Chakravarti A; Rivolta C; Bhattacharya SS
    Sci Rep; 2016 Jan; 6():19450. PubMed ID: 26781568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the ExAC data set for the presence of individuals with pathogenic genotypes implicated in severe Mendelian pediatric disorders.
    Tarailo-Graovac M; Zhu JYA; Matthews A; van Karnebeek CDM; Wasserman WW
    Genet Med; 2017 Dec; 19(12):1300-1308. PubMed ID: 28471432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing CNV genotypes using segregation analysis: combining pedigree information with CNV assay.
    Henshall JM; Whan VA; Norris BJ
    Genet Sel Evol; 2010 Aug; 42(1):34. PubMed ID: 20701809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allele frequency analysis of variants reported to cause autosomal dominant inherited retinal diseases question the involvement of 19% of genes and 10% of reported pathogenic variants.
    Hanany M; Sharon D
    J Med Genet; 2019 Aug; 56(8):536-542. PubMed ID: 30910914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic linkage analysis of a large family identifies
    Puigdevall P; Piccari L; Blanco I; BarberĂ  JA; Geiger D; Badenas C; MilĂ  M; Castelo R; Madrigal I
    J Med Genet; 2019 Jul; 56(7):481-490. PubMed ID: 30894412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incomplete penetrance in primary immunodeficiency: a skeleton in the closet.
    Gruber C; Bogunovic D
    Hum Genet; 2020 Jun; 139(6-7):745-757. PubMed ID: 32067110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies.
    Kryukov GV; Pennacchio LA; Sunyaev SR
    Am J Hum Genet; 2007 Apr; 80(4):727-39. PubMed ID: 17357078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering of predicted loss-of-function variants in genes linked with monogenic disease can explain incomplete penetrance.
    Beaumont RN; Hawkes G; Gunning AC; Wright CF
    Genome Med; 2024 Apr; 16(1):64. PubMed ID: 38671509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cis-acting modifiers in the ABCA4 locus contribute to the penetrance of the major disease-causing variant in Stargardt disease.
    Lee W; Zernant J; Nagasaki T; Molday LL; Su PY; Fishman GA; Tsang SH; Molday RS; Allikmets R
    Hum Mol Genet; 2021 Jun; 30(14):1293-1304. PubMed ID: 33909047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted long-read sequencing identifies missing disease-causing variation.
    Miller DE; Sulovari A; Wang T; Loucks H; Hoekzema K; Munson KM; Lewis AP; Fuerte EPA; Paschal CR; Walsh T; Thies J; Bennett JT; Glass I; Dipple KM; Patterson K; Bonkowski ES; Nelson Z; Squire A; Sikes M; Beckman E; Bennett RL; Earl D; Lee W; Allikmets R; Perlman SJ; Chow P; Hing AV; Wenger TL; Adam MP; Sun A; Lam C; Chang I; Zou X; Austin SL; Huggins E; Safi A; Iyengar AK; Reddy TE; Majoros WH; Allen AS; Crawford GE; Kishnani PS; ; King MC; Cherry T; Chong JX; Bamshad MJ; Nickerson DA; Mefford HC; Doherty D; Eichler EE
    Am J Hum Genet; 2021 Aug; 108(8):1436-1449. PubMed ID: 34216551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability.
    Beckmann JS; Estivill X; Antonarakis SE
    Nat Rev Genet; 2007 Aug; 8(8):639-46. PubMed ID: 17637735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk.
    Castel SE; Cervera A; Mohammadi P; Aguet F; Reverter F; Wolman A; Guigo R; Iossifov I; Vasileva A; Lappalainen T
    Nat Genet; 2018 Sep; 50(9):1327-1334. PubMed ID: 30127527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifier genes in humans: strategies for identification.
    Houlston RS; Tomlinson IP
    Eur J Hum Genet; 1998 Jan; 6(1):80-8. PubMed ID: 9781018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations.
    Box NF; Duffy DL; Chen W; Stark M; Martin NG; Sturm RA; Hayward NK
    Am J Hum Genet; 2001 Oct; 69(4):765-73. PubMed ID: 11500805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnitude of Mendelian versus complex inheritance of rare disorders.
    Chakravarti A
    Am J Med Genet A; 2021 Nov; 185(11):3287-3293. PubMed ID: 34418293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matching whole genomes to rare genetic disorders: Identification of potential causative variants using phenotype-weighted knowledge in the CAGI SickKids5 clinical genomes challenge.
    Pal LR; Kundu K; Yin Y; Moult J
    Hum Mutat; 2020 Feb; 41(2):347-362. PubMed ID: 31680375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifier genes in mice and humans.
    Nadeau JH
    Nat Rev Genet; 2001 Mar; 2(3):165-74. PubMed ID: 11256068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unlocking Mendelian disease using exome sequencing.
    Gilissen C; Hoischen A; Brunner HG; Veltman JA
    Genome Biol; 2011 Sep; 12(9):228. PubMed ID: 21920049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 60.