These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 23821250)
21. Arbuscular mycorrhizal fungi and sewage sludge enhance growth and adaptation of Metrosideros laurifolia on ultramafic soil in New Caledonia: A field experiment. Amir H; Cavaloc Y; Laurent A; Pagand P; Gunkel P; Lemestre M; Médevielle V; Pain A; McCoy S Sci Total Environ; 2019 Feb; 651(Pt 1):334-343. PubMed ID: 30240917 [TBL] [Abstract][Full Text] [Related]
22. Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil. Qiao Y; Crowley D; Wang K; Zhang H; Li H Environ Pollut; 2015 Nov; 206():636-43. PubMed ID: 26319508 [TBL] [Abstract][Full Text] [Related]
23. Interactive effect of compost application and inoculation with the fungus Claroideoglomus claroideum in Oenothera picensis plants growing in mine tailings. Pérez R; Tapia Y; Antilén M; Casanova M; Vidal C; Santander C; Aponte H; Cornejo P Ecotoxicol Environ Saf; 2021 Jan; 208():111495. PubMed ID: 33099139 [TBL] [Abstract][Full Text] [Related]
24. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment. Wang F; Liu X; Shi Z; Tong R; Adams CA; Shi X Chemosphere; 2016 Mar; 147():88-97. PubMed ID: 26761602 [TBL] [Abstract][Full Text] [Related]
25. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Yin N; Zhang Z; Wang L; Qian K Environ Sci Pollut Res Int; 2016 Sep; 23(17):17840-9. PubMed ID: 27250093 [TBL] [Abstract][Full Text] [Related]
26. The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Kohler J; Caravaca F; Azcón R; Díaz G; Roldán A Sci Total Environ; 2015 May; 514():42-8. PubMed ID: 25659304 [TBL] [Abstract][Full Text] [Related]
27. Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Hao L; Zhang Z; Hao B; Diao F; Zhang J; Bao Z; Guo W Ecotoxicol Environ Saf; 2021 Apr; 212():111996. PubMed ID: 33545409 [TBL] [Abstract][Full Text] [Related]
28. Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil. Roldán A; Díaz-Vivancos P; Hernández JA; Carrasco L; Caravaca F J Plant Physiol; 2008 May; 165(7):715-22. PubMed ID: 17913291 [TBL] [Abstract][Full Text] [Related]
29. [Effects of arbuscular mycorrhizal fungi on the growth and rare earth elements uptake of soybean grown in rare earth mine tailings]. Guo W; Zhao RX; Zhao WJ; Fu RY; Guo JY; Zhang J Huan Jing Ke Xue; 2013 May; 34(5):1915-21. PubMed ID: 23914548 [TBL] [Abstract][Full Text] [Related]
30. Chemical alteration of the rhizosphere of the mycorrhizal-colonized wheat root. Mohammad MJ; Pan WL; Kennedy AC Mycorrhiza; 2005 Jun; 15(4):259-66. PubMed ID: 15503187 [TBL] [Abstract][Full Text] [Related]
31. The growth and phosphorus acquisition of invasive plants Rudbeckia laciniata and Solidago gigantea are enhanced by arbuscular mycorrhizal fungi. Majewska ML; Rola K; Zubek S Mycorrhiza; 2017 Feb; 27(2):83-94. PubMed ID: 27581153 [TBL] [Abstract][Full Text] [Related]
32. The effects of arbuscular mycorrhizal fungal inoculation at a roadside prairie restoration site. White JA; Tallaksen J; Charvat I Mycologia; 2008; 100(1):6-11. PubMed ID: 18488348 [TBL] [Abstract][Full Text] [Related]
33. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Köhl L; Lukasiewicz CE; van der Heijden MG Plant Cell Environ; 2016 Jan; 39(1):136-46. PubMed ID: 26147222 [TBL] [Abstract][Full Text] [Related]
34. Implications of spatial heterogeneity of tailing material and time scale of vegetation growth processes for the design of phytostabilisation. Constantinescu P; Neagoe A; Nicoară A; Grawunder A; Ion S; Onete M; Iordache V Sci Total Environ; 2019 Nov; 692():1057-1069. PubMed ID: 31539938 [TBL] [Abstract][Full Text] [Related]
35. Effects of biochar, ochre and manure amendments associated with a metallicolous ecotype of Agrostis capillaris on As and Pb stabilization of a former mine technosol. Lebrun M; Nandillon R; Miard F; Le Forestier L; Morabito D; Bourgerie S Environ Geochem Health; 2021 Apr; 43(4):1491-1505. PubMed ID: 32424789 [TBL] [Abstract][Full Text] [Related]
36. The effect of long-term Cd and Ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. Truyens S; Jambon I; Croes S; Janssen J; Weyens N; Mench M; Carleer R; Cuypers A; Vangronsveld J Int J Phytoremediation; 2014; 16(7-12):643-59. PubMed ID: 24933875 [TBL] [Abstract][Full Text] [Related]
37. Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil. Chaturvedi R; Favas P; Pratas J; Varun M; Paul MS Ecotoxicol Environ Saf; 2018 Feb; 148():318-326. PubMed ID: 29091834 [TBL] [Abstract][Full Text] [Related]
38. Use of wastes from the pulp and paper industry for the remediation of soils degraded by mining activities: Chemical, biochemical and ecotoxicological effects. Alvarenga P; Rodrigues D; Mourinha C; Palma P; de Varennes A; Cruz N; Tarelho LAC; Rodrigues S Sci Total Environ; 2019 Oct; 686():1152-1163. PubMed ID: 31412511 [TBL] [Abstract][Full Text] [Related]
39. Symbiosis of isoetid plant species with arbuscular mycorrhizal fungi under aquatic versus terrestrial conditions. Sudová R; Rydlová J; Čtvrtlíková M; Kohout P; Oehl F; Voříšková J; Kolaříková Z Mycorrhiza; 2021 May; 31(3):273-288. PubMed ID: 33486575 [TBL] [Abstract][Full Text] [Related]