BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 23821404)

  • 1. Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses.
    Huegel J; Sgariglia F; Enomoto-Iwamoto M; Koyama E; Dormans JP; Pacifici M
    Dev Dyn; 2013 Sep; 242(9):1021-32. PubMed ID: 23821404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pathogenic roles of heparan sulfate deficiency in hereditary multiple exostoses.
    Pacifici M
    Matrix Biol; 2018 Oct; 71-72():28-39. PubMed ID: 29277722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in Hereditary Multiple Exostoses.
    Huegel J; Mundy C; Sgariglia F; Nygren P; Billings PC; Yamaguchi Y; Koyama E; Pacifici M
    Dev Biol; 2013 May; 377(1):100-12. PubMed ID: 23458899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteochondroma formation is independent of heparanase expression as revealed in a mouse model of hereditary multiple exostoses.
    Mundy C; Chung J; Koyama E; Bunting S; Mahimkar R; Pacifici M
    J Orthop Res; 2022 Oct; 40(10):2391-2401. PubMed ID: 34996123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Etiological point mutations in the hereditary multiple exostoses gene EXT1: a functional analysis of heparan sulfate polymerase activity.
    Cheung PK; McCormick C; Crawford BE; Esko JD; Tufaro F; Duncan G
    Am J Hum Genet; 2001 Jul; 69(1):55-66. PubMed ID: 11391482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsuspected osteochondroma-like outgrowths in the cranial base of Hereditary Multiple Exostoses patients and modeling and treatment with a BMP antagonist in mice.
    Sinha S; Mundy C; Bechtold T; Sgariglia F; Ibrahim MM; Billings PC; Carroll K; Koyama E; Jones KB; Pacifici M
    PLoS Genet; 2017 Apr; 13(4):e1006742. PubMed ID: 28445472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heparan sulfate abnormalities in exostosis growth plates.
    Hecht JT; Hall CR; Snuggs M; Hayes E; Haynes R; Cole WG
    Bone; 2002 Jul; 31(1):199-204. PubMed ID: 12110435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haploinsufficiency of EXT1 and Heparan Sulphate Deficiency Associated with Hereditary Multiple Exostoses in a Pakistani Family.
    Ajmal M; Muhammad H; Nasir M; Shoaib M; Malik SA; Ullah I
    Medicina (Kaunas); 2022 Dec; 59(1):. PubMed ID: 36676722
    [No Abstract]   [Full Text] [Related]  

  • 9. Hereditary multiple exostoses and heparan sulfate polymerization.
    Zak BM; Crawford BE; Esko JD
    Biochim Biophys Acta; 2002 Dec; 1573(3):346-55. PubMed ID: 12417417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple hereditary exostoses (MHE): elucidating the pathogenesis of a rare skeletal disorder through interdisciplinary research.
    Jones KB; Pacifici M; Hilton MJ
    Connect Tissue Res; 2014 Apr; 55(2):80-8. PubMed ID: 24409815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.
    Sgariglia F; Candela ME; Huegel J; Jacenko O; Koyama E; Yamaguchi Y; Pacifici M; Enomoto-Iwamoto M
    Bone; 2013 Nov; 57(1):220-31. PubMed ID: 23958822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries.
    Billings PC; Pacifici M
    Connect Tissue Res; 2015; 56(4):272-80. PubMed ID: 26076122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compound heterozygous loss of Ext1 and Ext2 is sufficient for formation of multiple exostoses in mouse ribs and long bones.
    Zak BM; Schuksz M; Koyama E; Mundy C; Wells DE; Yamaguchi Y; Pacifici M; Esko JD
    Bone; 2011 May; 48(5):979-87. PubMed ID: 21310272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hereditary Multiple Exostoses: New Insights into Pathogenesis, Clinical Complications, and Potential Treatments.
    Pacifici M
    Curr Osteoporos Rep; 2017 Jun; 15(3):142-152. PubMed ID: 28466453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reevaluation of a genetic model for the development of exostosis in hereditary multiple exostosis.
    Hall CR; Cole WG; Haynes R; Hecht JT
    Am J Med Genet; 2002 Sep; 112(1):1-5. PubMed ID: 12239711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transgenic expression of the EXT2 gene in developing chondrocytes enhances the synthesis of heparan sulfate and bone formation in mice.
    Morimoto K; Shimizu T; Furukawa K; Morio H; Kurosawa H; Shirasawa T
    Biochem Biophys Res Commun; 2002 Apr; 292(4):999-1009. PubMed ID: 11944914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation-induced loss of heparan sulfate in human exostosis derived chondrocytes.
    Hecht JT; Hayes E; Haynes R; Cole WG; Long RJ; Farach-Carson MC; Carson DD
    Differentiation; 2005 Jun; 73(5):212-21. PubMed ID: 16026543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heparanase stimulates chondrogenesis and is up-regulated in human ectopic cartilage: a mechanism possibly involved in hereditary multiple exostoses.
    Huegel J; Enomoto-Iwamoto M; Sgariglia F; Koyama E; Pacifici M
    Am J Pathol; 2015 Jun; 185(6):1676-85. PubMed ID: 25863260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation.
    Busse M; Feta A; Presto J; Wilén M; Grønning M; Kjellén L; Kusche-Gullberg M
    J Biol Chem; 2007 Nov; 282(45):32802-10. PubMed ID: 17761672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heparan sulfate antagonism alters bone morphogenetic protein signaling and receptor dynamics, suggesting a mechanism in hereditary multiple exostoses.
    Mundy C; Yang E; Takano H; Billings PC; Pacifici M
    J Biol Chem; 2018 May; 293(20):7703-7716. PubMed ID: 29622677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.