These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 23821619)

  • 21. Plant concepts for mineral acquisition and allocation.
    Hell R; Hillebrand H
    Curr Opin Biotechnol; 2001 Apr; 12(2):161-8. PubMed ID: 11287231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures.
    Postma JA; Lynch JP
    Ann Bot; 2012 Jul; 110(2):521-34. PubMed ID: 22523423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics in plant roots and shoots minimize stress, save energy and maintain water and nutrient uptake.
    Arsova B; Foster KJ; Shelden MC; Bramley H; Watt M
    New Phytol; 2020 Feb; 225(3):1111-1119. PubMed ID: 31127613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations.
    Motavalli PP; Kremer RJ; Fang M; Means NE
    J Environ Qual; 2004; 33(3):816-24. PubMed ID: 15224915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration.
    Kell DB
    Ann Bot; 2011 Sep; 108(3):407-18. PubMed ID: 21813565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Root system architecture: insights from Arabidopsis and cereal crops.
    Smith S; De Smet I
    Philos Trans R Soc Lond B Biol Sci; 2012 Jun; 367(1595):1441-52. PubMed ID: 22527386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils.
    Rashid MI; Mujawar LH; Shahzad T; Almeelbi T; Ismail IM; Oves M
    Microbiol Res; 2016 Feb; 183():26-41. PubMed ID: 26805616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review.
    Xue Y; Xia H; Christie P; Zhang Z; Li L; Tang C
    Ann Bot; 2016 Mar; 117(3):363-77. PubMed ID: 26749590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorus-acquisition strategies of canola, wheat and barley in soil amended with sewage sludges.
    Nobile C; Houben D; Michel E; Firmin S; Lambers H; Kandeler E; Faucon MP
    Sci Rep; 2019 Oct; 9(1):14878. PubMed ID: 31619720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The race to create super-crops.
    Gilbert N
    Nature; 2016 May; 533(7603):308-10. PubMed ID: 27193660
    [No Abstract]   [Full Text] [Related]  

  • 31. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use.
    Imakumbili MLE; Semu E; Semoka JMR; Abass A; Mkamilo G
    PLoS One; 2020; 15(2):e0228641. PubMed ID: 32053630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of land configuration and organic nutrient management on productivity, quality and soil properties under baby corn in Eastern Himalayas.
    Babu S; Singh R; Avasthe RK; Yadav GS; Das A; Singh VK; Mohapatra KP; Rathore SS; Chandra P; Kumar A
    Sci Rep; 2020 Sep; 10(1):16129. PubMed ID: 32999388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence.
    Raven JA; Lambers H; Smith SE; Westoby M
    New Phytol; 2018 Mar; 217(4):1420-1427. PubMed ID: 29292829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability.
    Yu P; White PJ; Hochholdinger F; Li C
    Planta; 2014 Oct; 240(4):667-78. PubMed ID: 25143250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture.
    Lynch JP
    New Phytol; 2019 Jul; 223(2):548-564. PubMed ID: 30746704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [A long-term field trial on fertilization and on use of recycled nutrients in farming systems IV. Soil fertility changes].
    Zhang L; Shen S; Yu W
    Ying Yong Sheng Tai Xue Bao; 2002 Nov; 13(11):1413-6. PubMed ID: 12624996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition.
    Coskun D; Britto DT; Shi W; Kronzucker HJ
    Nat Plants; 2017 Jun; 3():17074. PubMed ID: 28585561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture.
    Gouda S; Kerry RG; Das G; Paramithiotis S; Shin HS; Patra JK
    Microbiol Res; 2018 Jan; 206():131-140. PubMed ID: 29146250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Responses of agricultural crops of free-air CO2 enrichment].
    Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions.
    Dathe A; Postma JA; Postma-Blaauw MB; Lynch JP
    Ann Bot; 2016 Sep; 118(3):401-14. PubMed ID: 27474507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.