These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 23822172)

  • 1. Proton-electron transport and transfer in electrocatalytic films. Application to a cobalt-based O2-evolution catalyst.
    Bediako DK; Costentin C; Jones EC; Nocera DG; Savéant JM
    J Am Chem Soc; 2013 Jul; 135(28):10492-502. PubMed ID: 23822172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases.
    Klingan K; Ringleb F; Zaharieva I; Heidkamp J; Chernev P; Gonzalez-Flores D; Risch M; Fischer A; Dau H
    ChemSusChem; 2014 May; 7(5):1301-10. PubMed ID: 24449514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic four-electron reduction of O2 via rate-determining proton-coupled electron transfer to a dinuclear cobalt-μ-1,2-peroxo complex.
    Fukuzumi S; Mandal S; Mase K; Ohkubo K; Park H; Benet-Buchholz J; Nam W; Llobet A
    J Am Chem Soc; 2012 Jun; 134(24):9906-9. PubMed ID: 22656065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH.
    Surendranath Y; Kanan MW; Nocera DG
    J Am Chem Soc; 2010 Nov; 132(46):16501-9. PubMed ID: 20977209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton-coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine.
    Hatay I; Su B; Li F; Méndez MA; Khoury T; Gros CP; Barbe JM; Ersoz M; Samec Z; Girault HH
    J Am Chem Soc; 2009 Sep; 131(37):13453-9. PubMed ID: 19715275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0-14: the thermodynamic basis for catalyst structure, stability, and activity.
    Gerken JB; McAlpin JG; Chen JY; Rigsby ML; Casey WH; Britt RD; Stahl SS
    J Am Chem Soc; 2011 Sep; 133(36):14431-42. PubMed ID: 21806043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst.
    Bediako DK; Surendranath Y; Nocera DG
    J Am Chem Soc; 2013 Mar; 135(9):3662-74. PubMed ID: 23360238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional and unidirectional PCET in a molecular model of a cobalt-based oxygen-evolving catalyst.
    Symes MD; Surendranath Y; Lutterman DA; Nocera DG
    J Am Chem Soc; 2011 Apr; 133(14):5174-7. PubMed ID: 21413703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effect of water on the oxygen reduction catalyzed by cobalt(II) tetraphenylporphyrin.
    Trojánek A; Langmaier J; Kvapilová H; Záliš S; Samec Z
    J Phys Chem A; 2014 Mar; 118(11):2018-28. PubMed ID: 24564521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water.
    Sun Y; Liu C; Grauer DC; Yano J; Long JR; Yang P; Chang CJ
    J Am Chem Soc; 2013 Nov; 135(47):17699-702. PubMed ID: 24219808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity.
    Salimi A; Hallaj R; Soltanian S
    Biophys Chem; 2007 Nov; 130(3):122-31. PubMed ID: 17825977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted proton delivery in the catalyzed reduction of oxygen to water by bimetallic pacman porphyrins.
    Chang CJ; Loh ZH; Shi C; Anson FC; Nocera DG
    J Am Chem Soc; 2004 Aug; 126(32):10013-20. PubMed ID: 15303875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-electron oxygen reduction by brominated cobalt corrole.
    Schechter A; Stanevsky M; Mahammed A; Gross Z
    Inorg Chem; 2012 Jan; 51(1):22-4. PubMed ID: 22221278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt porphyrin electrode films for electrocatalytic water oxidation.
    Han A; Jia H; Ma H; Ye S; Wu H; Lei H; Han Y; Cao R; Du P
    Phys Chem Chem Phys; 2014 Jun; 16(23):11209-17. PubMed ID: 24777036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 2. Mechanism from first principles.
    Leung K; Nielsen IM; Sai N; Medforth C; Shelnutt JA
    J Phys Chem A; 2010 Sep; 114(37):10174-84. PubMed ID: 20726563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrosynthesis of highly transparent cobalt oxide water oxidation catalyst films from cobalt aminopolycarboxylate complexes.
    Bonke SA; Wiechen M; Hocking RK; Fang XY; Lupton DW; MacFarlane DR; Spiccia L
    ChemSusChem; 2015 Apr; 8(8):1394-403. PubMed ID: 25826458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+.
    Kanan MW; Nocera DG
    Science; 2008 Aug; 321(5892):1072-5. PubMed ID: 18669820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.