These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

29 related articles for article (PubMed ID: 23822219)

  • 1. Noncovalent modification of chymotrypsin surface using an amphiphilic polymer scaffold: implications in modulating protein function.
    Sandanaraj BS; Vutukuri DR; Simard JM; Klaikherd A; Hong R; Rotello VM; Thayumanavan S
    J Am Chem Soc; 2005 Aug; 127(30):10693-8. PubMed ID: 16045357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns.
    Cui H; Cao H; Cai H; Jaeger KE; Davari MD; Schwaneberg U
    Chemistry; 2020 Jan; 26(3):643-649. PubMed ID: 31553080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment.
    Bharmoria P; Tietze AA; Mondal D; Kang TS; Kumar A; Freire MG
    Chem Rev; 2024 Mar; 124(6):3037-3084. PubMed ID: 38437627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions.
    Vanik V; Bednarikova Z; Fabriciova G; Wang SS; Gazova Z; Fedunova D
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing the complexity of ionic liquid-protein interactions through a multi-technique investigation.
    Bui-Le L; Clarke CJ; Bröhl A; Brogan APS; Arpino JAJ; Polizzi KM; Hallett JP
    Commun Chem; 2020 May; 3(1):55. PubMed ID: 36703418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-specific destabilization of azurin by tetramethylguanidinium-dipeptide ionic liquids.
    Patel R; Clark AK; DeStefano G; DeStefano I; Gogoj H; Gray E; Patel AY; Hauner JT; Caputo GA; Vaden TD
    Biochem Biophys Rep; 2022 Jul; 30():101242. PubMed ID: 35280523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical assessment of structure-based approaches to improve protein resistance in aqueous ionic liquids by enzyme-wide saturation mutagenesis.
    El Harrar T; Davari MD; Jaeger KE; Schwaneberg U; Gohlke H
    Comput Struct Biotechnol J; 2022; 20():399-409. PubMed ID: 35070165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of Ionic Liquids in Whole-Cell and Isolated Enzyme Biocatalysis.
    Imam HT; Krasňan V; Rebroš M; Marr AC
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways.
    El Harrar T; Frieg B; Davari MD; Jaeger KE; Schwaneberg U; Gohlke H
    Comput Struct Biotechnol J; 2021; 19():4248-4264. PubMed ID: 34429845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heme Dissociation from Myoglobin in the Presence of the Zwitterionic Detergent
    Kohn EM; Lee JY; Calabro A; Vaden TD; Caputo GA
    Biomolecules; 2018 Oct; 8(4):. PubMed ID: 30380655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Notable Stabilization of α-Chymotrypsin by the Protic Ionic Additive, [ch][dhp]: Calorimetric Evidence for a Fine Enthalpy/Entropy Balance.
    Uchaneishvili S; Makharadze M; Shushanyan M; van Eldik R; Khoshtariya DE
    Int Sch Res Notices; 2014; 2014():834189. PubMed ID: 27437474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of three ionic liquid-tolerant cellulases by molecular dynamics.
    Jaeger V; Burney P; Pfaendtner J
    Biophys J; 2015 Feb; 108(4):880-892. PubMed ID: 25692593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently.
    Currin A; Swainston N; Day PJ; Kell DB
    Chem Soc Rev; 2015 Mar; 44(5):1172-239. PubMed ID: 25503938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mediating electrostatic binding of 1-butyl-3-methylimidazolium chloride to enzyme surfaces improves conformational stability.
    Nordwald EM; Kaar JL
    J Phys Chem B; 2013 Aug; 117(30):8977-86. PubMed ID: 23822219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of enzymes in ionic liquids via modification of enzyme charge.
    Nordwald EM; Kaar JL
    Biotechnol Bioeng; 2013 Sep; 110(9):2352-60. PubMed ID: 23532939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics investigation of the ionic liquid/enzyme interface: application to engineering enzyme surface charge.
    Burney PR; Nordwald EM; Hickman K; Kaar JL; Pfaendtner J
    Proteins; 2015 Apr; 83(4):670-80. PubMed ID: 25641162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A green approach to offset the perturbation action of 1-butyl-3-methylimidazolium iodide on α-chymotrypsin.
    Reddy PM; Umapathi R; Venkatesu P
    Phys Chem Chem Phys; 2015 Jan; 17(1):184-90. PubMed ID: 25378219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic Investigation of Imidazolium Ionic Liquid Effects on Enzyme Structure.
    Nordwald EM; Plaks JG; Snell JR; Sousa MC; Kaar JL
    Chembiochem; 2015 Nov; 16(17):2456-9. PubMed ID: 26388426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of the stability of α-chymotrypsin in different solvent media.
    Kumar A; Venkatesu P
    Chem Rev; 2012 Jul; 112(7):4283-307. PubMed ID: 22506806
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.