These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23822238)

  • 1. Homogeneous connectivity of potential energy network in a solidlike state of water cluster.
    Akimoto T; Kaneko T; Yasuoka K; Zeng XC
    J Chem Phys; 2013 Jun; 138(24):244301. PubMed ID: 23822238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural transitions and dipole moment of water clusters (H2O)(n=4-100).
    Gelman-Constantin J; Carignano MA; Szleifer I; Marceca EJ; Corti HR
    J Chem Phys; 2010 Jul; 133(2):024506. PubMed ID: 20632762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase coexistence in melting aluminum clusters.
    Cao B; Starace AK; Judd OH; Jarrold MF
    J Chem Phys; 2009 May; 130(20):204303. PubMed ID: 19485445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.
    Qvist J; Schober H; Halle B
    J Chem Phys; 2011 Apr; 134(14):144508. PubMed ID: 21495765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A first principles molecular dynamics study of excess electron and lithium atom solvation in water-ammonia mixed clusters: structural, spectral, and dynamical behaviors of [(H2O)5NH3]- and Li(H2O)5NH3 at finite temperature.
    Pratihar S; Chandra A
    J Chem Phys; 2011 Jan; 134(3):034302. PubMed ID: 21261348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo temperature basin paving with effective fragment potential: an efficient and fast method for finding low-energy structures of water clusters (H2O)20 and (H2O)25.
    Shanker S; Bandyopadhyay P
    J Phys Chem A; 2011 Oct; 115(42):11866-75. PubMed ID: 21928813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbohydrate clustering in aqueous solutions and the dynamics of confined water.
    Sonoda MT; Skaf MS
    J Phys Chem B; 2007 Oct; 111(41):11948-56. PubMed ID: 17887790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bottom-up view of water network-mediated CO2 reduction using cryogenic cluster ion spectroscopy and direct dynamics simulations.
    Breen KJ; DeBlase AF; Guasco TL; Voora VK; Jordan KD; Nagata T; Johnson MA
    J Phys Chem A; 2012 Jan; 116(3):903-12. PubMed ID: 22145700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependent electron binding in (H2O)8.
    Carignano MA; Mohammad A; Kais S
    J Phys Chem A; 2009 Oct; 113(41):10886-90. PubMed ID: 19722598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water clusters adsorbed on polycyclic aromatic hydrocarbons: energetics and conformational dynamics.
    Simon A; Spiegelman F
    J Chem Phys; 2013 May; 138(19):194309. PubMed ID: 23697420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water.
    Garcia-Molina R; Abril I; Heredia-Avalos S; Kyriakou I; Emfietzoglou D
    Phys Med Biol; 2011 Oct; 56(19):6475-93. PubMed ID: 21934189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanosecond Stokes shift dynamics, dynamical transition, and gigantic reorganization energy of hydrated heme proteins.
    Matyushov DV
    J Phys Chem B; 2011 Sep; 115(36):10715-24. PubMed ID: 21815677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticles adsorbed at the water/oil interface: coverage and composition effects on structure and diffusion.
    Luu XC; Yu J; Striolo A
    Langmuir; 2013 Jun; 29(24):7221-8. PubMed ID: 23472643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation of quasi-two-dimensional water clusters on ice nucleation protein.
    Murakami D; Yasuoka K
    J Chem Phys; 2012 Aug; 137(5):054303. PubMed ID: 22894344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonadiabatic trajectory studies of NaI(H2O)n photodissociation dynamics.
    Koch DM; Timerghazin QK; Peslherbe GH; Ladanyi BM; Hynes JT
    J Phys Chem A; 2006 Feb; 110(4):1438-54. PubMed ID: 16435804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of water clusters confined in proteins: a molecular dynamics simulation study of interfacial waters in a dimeric hemoglobin.
    Gnanasekaran R; Xu Y; Leitner DM
    J Phys Chem B; 2010 Dec; 114(50):16989-96. PubMed ID: 21126033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics extended for fluctuating networks: application to water.
    Kashmirian JM; Uhlherr A; Dorin A; Green DG
    J Comput Chem; 2012 Jun; 33(15):1364-73. PubMed ID: 22457060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stalking Higher Energy Conformers on the Potential Energy Surface of Charged Species.
    Brites V; Cimas A; Spezia R; Sieffert N; Lisy JM; Gaigeot MP
    J Chem Theory Comput; 2015 Mar; 11(3):871-83. PubMed ID: 26579741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global potential energy minima of C60(H2O)n clusters.
    Hernández-Rojas J; Bretón J; Gomez Llorente JM; Wales DJ
    J Phys Chem B; 2006 Jul; 110(27):13357-62. PubMed ID: 16821854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.